首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the effects of dead space (VD) loading on breathing pattern during maximal incremental exercise in eight normal subjects. Addition of external VD was associated with a significant increase in tidal volume (VT) and decrease in respiratory frequency (f) at moderate and high levels of ventilation (VI); at a VI of 120 l/min, VT and f with added VD were 3.31 +/- 0.33 liters and 36.7 +/- 6.7 breaths/min, respectively, compared with 2.90 +/- 0.29 liters and 41.8 +/- 7.3 breaths/min without added VD. Because breathing pattern does not change with CO2 inhalation during heavy exercise (Gallagher et al. J. Appl. Physiol. 63: 238-244, 1987), the breathing pattern response to added VD is probably a consequence of alteration in the PCO2 time profile, possibly sensed by the carotid body and/or airway-pulmonary chemoreceptors. The increase in VT during heavy exercise with VD loading indicates that the tachypneic breathing pattern of heavy exercise is not due to mechanical limitation of maximum ventilatory capacity at high levels of VT.  相似文献   

2.
A change from the supine to the head-up posture in anesthetized dogs elicits increased phasic expiratory activation of the rib cage and abdominal expiratory muscles. However, when this postural change is produced over a 4- to 5-s period, there is an initial apnea during which all the muscles are silent. In the present studies, we have taken advantage of this initial silence to determine functional residual capacity (FRC) and measure the subsequent change in end-expiratory lung volume. Eight animals were studied, and in all of them end-expiratory lung volume in the head-up posture decreased relative to FRC [329 +/- 70 (SE) ml]. Because this decrease also represents the increase in lung volume as a result of expiratory muscle relaxation at the end of the expiratory pause, it can be used to determine the expiratory muscle contribution to tidal volume (VT). The average contribution was 62 +/- 6% VT. After denervation of the rib cage expiratory muscles, the reduction in end-expiratory lung volume still amounted to 273 +/- 84 ml (49 +/- 10% VT). Thus, in head-up dogs, about two-thirds of VT result from the action of the expiratory muscles, and most of it (83%) is due to the action of the abdominal rather than the rib cage expiratory muscles.  相似文献   

3.
Airway obstruction during periodic breathing in premature infants   总被引:1,自引:0,他引:1  
To characterize changes in pulmonary resistance, timing, and respiratory drive during periodic breathing, we studied 10 healthy preterm infants (body wt 1,340 +/- 240 g, postconceptional age 35 +/- 2 wk). Periodic breathing in these infants was defined by characteristic cycles of ventilation with intervening respiratory pauses greater than or equal to 2 s. Nasal airflow was recorded with a pneumotachometer, and esophageal or pharyngeal pressure was recorded with a fluid-filled catheter. Pulmonary resistance at half-maximal tidal volume, inspiratory time (TI), expiratory time (TE), and mean inspiratory flow (VT/TI) were derived from computer analysis of five cycles of periodic breathing per infant. In 80% of infants periodic breathing was accompanied by completely obstructed breaths at the onset of ventilatory cycles; the site of airway obstruction occurred within the pharynx. The first one-third of the ventilatory phase of each cycle was accompanied by the highest airway resistance of the entire cycle (168 +/- 98 cmH2O.l-1.s). In all infants TI was greatest at the onset of the ventilatory cycle, VT/TI was maximal at the midpoint of the cycle, and TE was longest in the latter two-thirds of each cycle. A characteristic increase and subsequent decrease of 4.5 +/- 1.9 ml in end-expiratory volume also occurred within each cycle. These results demonstrate that partial or complete airway obstruction occurs during periodic breathing. Both apnea and periodic breathing share the element of upper airway instability common to premature infants.  相似文献   

4.
Volume quantification of chest wall motion in dogs   总被引:3,自引:0,他引:3  
We employed high-speed multisliced X-ray-computed tomography to determine the relative volume contributions of rib cage (delta Vrc) and diaphragmatic motion (delta Vdi) to tidal volume (VT) during spontaneous breathing in 6 anesthetized dogs lying supine. Mean values were 40 +/- 6% (SE) for delta Vrc and 62 +/- 8% of VT for delta Vdi. The difference between VT and changes in thoracic cavity volume was taken to represent a change in thoracic blood volume (2 +/- 3% of VT). To estimate how much of delta Vrc was caused by diaphragmatic contraction and how much of delta Vdi was caused by rib cage motion, delta Vrc and delta Vdi were determined during bilateral stimulation of the C5-C6 phrenic nerve roots in the apneic dog and again during spontaneous breathing after phrenicotomy. Thoracic cavity volume (Vth) measured during hypocapnic apnea was consistently larger than Vth at end expiration, suggesting that relaxation of expiratory muscles contributed significantly to both delta Vrc and delta Vdi during spontaneous inspiration. Phrenic nerve stimulation did not contribute to delta Vrc, suggesting that diaphragmatic contraction had no net expanding action on the rib cage above the zone of apposition. Spontaneous breathing after phrenicotomy resulted in small and inconsistent diaphragmatic displacement (8 +/- 4% of VT). We conclude that the diaphragm does not drive the rib cage to inflate the lungs and that rib cage motion does not significantly affect diaphragmatic position during spontaneous breathing in anesthetized dogs lying supine.  相似文献   

5.
We determined the influence of several factors on lung solute clearance using aerosolized 99mTc-diethylenetriaminepentaacetate. We used a jet nebulizer-plate separator-balloon system to generate particles with an activity median aerodynamic diameter of 1.1 micron, administered the aerosol in a standard fashion, and determined clearance half times (t1/2) with a gamma-scintillation camera. The following serial studies were performed in five anesthetized, paralyzed, intubated, mechanically ventilated dogs: 1) control, with ventilatory frequency (f) = 15 breaths/min and tidal volume (VT) = 15 ml/kg during solute clearance; 2) repeat control, for reproducibility; 3) increased frequency, with f = 25 breaths/min and VT = 10 ml/kg; 4) positive end-expiratory pressure (PEEP) of 10 cmH2O; 5) unilateral pulmonary arterial occlusion (PAO); and 6) bronchial arterial occlusion (BAO). Control t1/2 was 25 +/- 5 min and did not change in the repeat control, increased frequency, or BAO experiments. PEEP markedly decreased t1/2 to 13 +/- 3 min (P less than 0.01), and PAO increased it to 37 +/- 6 min (P less than 0.05). We conclude that clearance from the lungs by our method is uninfluenced by increased frequency, increases markedly with PEEP, and depends on pulmonary, not bronchial, blood flow.  相似文献   

6.
7.
The abdominal muscles accelerate airflow during expiration and may also influence the end-expiratory volume and configuration of the thorax. Although much is known about their electrical activity, the degree to which they change length during the respiratory cycle has not been previously assessed. In the present study we measured respiratory changes in transverse abdominis length using sonomicrometry in 14 pentobarbital sodium-anesthetized supine dogs and compared length changes to simultaneously recorded tidal volume and transverse abdominis electromyograms (EMG). To determine muscle resting length at passive functional residual capacity (LFRC), the animals were hyperventilated to apnea. The transverse abdominis was electrically active in all animals during resting O2 breathing (eupnea). During inspiration the transverse abdominis lengthened above resting length in all 14 dogs by a mean of 3.7 +/- 1.1% LFRC; during expiration the transverse abdominis shortened below resting length in 13 of 14 dogs by a mean of 4.2 +/- 0.9% LFRC. Increasing hyperoxic hypercapnia (produced in 9 animals) progressively heightened transverse abdominis EMG and progressively increased the extent of muscle shortening below resting length (to 12.6 +/- 3.2% LFRC at a PCO2 of 90 Torr). During single-breath airway occlusion substantial inspiratory lengthening of the transverse abdominis occurred, both during O2 breathing and during CO2 rebreathing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The purpose of this study was to characterize the variability and patterns of spontaneous respiratory behaviour in awake cats. Respiration was measured in six cats over 80 or 90 min by the plethysmographic technique. In three cats, arterial blood gases were measured. Breath frequency (f) and tidal volume (VT) varied considerably breath-to-breath, although on average, these measurements as well as average ventilation remained relatively constant. The incidence of breath ventilation (VT X 60/TTOT) and VT were distributed unimodally but the incidence of breath f had a bimodal distribution. In the low f range, average f was 22.5 breaths/min, and in the high f range, average f was 41.6 breaths/min. The latter range appeared to be associated with purring. Inspiratory duration (TI) was less than expiratory duration (TE) at low f but exceeded TE at high f. For a given breath ventilation there was a predictable f and VT. At shorter TI (higher f) mean inspiratory flow, an index of central respiratory drive, increased but VT decreased. This study indicates that "normal" control respiratory behaviour in awake cats is better described by the range and pattern of breathing than by average values.  相似文献   

9.
Respiratory effects of positive and negative pressure breathing were studied in 1- and 4-day-old rabbit pups anesthetized with ketamine (50 mg/kg, im) and acepromazine (3 mg/kg, im). We recorded tidal volume (VT), tracheal pressure (Ptr), and integrated diaphragmatic EMG (DiEMG). Inspiratory (TI) and expiratory time (TE) were measured from the records of DiEMG. During breathing with increased Ptr by 1 or 2 cmH2O, VT, minute ventilation (VE), and respiratory rate (f) decreased. Changes in f relied on a TE prolongation. Neither DiEMG nor its rate of rise (DiEMGt) were affected. Except for VT decrease during positive Ptr, all other effects disappeared after vagotomy. Our results indicate that an increase in tonic vagal activity interacts with the mechanisms controlling TE and has no effect on depth and duration of inspiration. When Ptr decreased by 1 and 2 cmH2O, VE increased due to an increase in f. Increase in f relied on shortening of both TI and TE; the TE effect being more pronounced. DiEMG and DiEMGt also increased. Adverse effects of lung deflation and vagotomy strongly suggest that the respiratory reflex stimulation due to decrease in Ptr does not rely on inhibition of the slowly adapting stretch receptor activity. Therefore other excitatory vagal inputs must be responsible for this response. We propose two vagally mediated inputs: the irritant and/or the cardiac receptors.  相似文献   

10.
Inhalation of smoke generated from high-nicotine cigarettes frequently evoked an immediate augmented inspiration in conscious dogs (J. Appl. Physiol. 54: 562-570, 1983); this reflex response was believed to result from a stimulation of rapidly adapting receptors in the lungs. To test this hypothesis, we recorded the vagal afferent activity arising from the rapidly adapting receptors in the lungs and delivered 120 ml of high- and low-nicotine cigarette smoke separately in a single ventilatory cycle in 20 anesthetized open-chest and artificially ventilated dogs. These receptors were stimulated on the first breath of delivery of smoke generated by high-nicotine cigarettes; activity increased from a base line of 0.9 +/- 0.2 to a peak of 9.9 +/- 1.2 (SE) impulses/breath (n = 58). After three to six breaths when the receptors' discharge returned toward base-line activity, a delayed increase of activity emerged (peak activity = 3.4 +/- 0.6 impulses/breath, n = 58) in 32 of the 58 receptors studied and lasted for three to seven breaths. By contrast, only a mild stimulatory effect of low-nicotine cigarette smoke was found, either immediately or after a delay, in 15 of the 54 receptors studied. We conclude that rapidly adapting receptors are stimulated by a single breath of cigarette smoke and that nicotine is the primary stimulant agent.  相似文献   

11.
We measured the volume change of the thoracic cavity (delta Vth) and the volumes displaced by the diaphragm (delta Vdi) and rib cage (delta Vrc) in six pentobarbital-anesthetized dogs lying supine. A high-speed X-ray scanner (dynamic spatial reconstructor) provided three-dimensional images of the thorax during spontaneous breathing and during mechanical ventilation with paralysis. Tidal volume (VT) was measured by integrating gas flow. Changes in thoracic liquid volume (delta Vliq, presumably caused by changes in thoracic blood volume) were calculated as delta Vth - VT. Absolute volume displaced by the rib cage was not significantly different during the two modes of ventilation. During spontaneous breathing, thoracic blood volume increased during inspiration; delta Vliq was 12.3 +/- 4.1% of delta Vth. During mechanical ventilation, delta Vliq was nearly zero. Configuration of the relaxed chest wall was similar during muscular relaxation induced by either pharmacological paralysis or hyperventilation. Expiratory muscle activity produced 50 +/- 11% of the delta Vth during spontaneous breathing. We conclude that at constant VT the volume displaced by the rib cage is remarkably similar during the transition from spontaneous breathing to mechanical ventilation, while both diaphragmatic volume displacement and changes in intrathoracic blood volume decrease by a similar amount.  相似文献   

12.
We studied the changes in ventilation induced by intracisternal administration of enkephalins in four unanesthetized adult dogs. Instantaneous minute ventilation (VT/TT) decreased markedly after D-Ala-Met-enkephalinamide (DAME). Mean VT/TT decreased maximally by 20-50 min after DAME and lasted an additional 15-60 min; by 2 h, VT/TT had returned to base line. Four doses (5, 25, 60, and 125 micrograms/kg) of DAME were used, and the ventilatory response depended on the dose. Mean inspiratory time decreased but mean expiratory time and mean TT showed a marked prolongation. Periodic breathing (2-3 breaths separated by long apneic pauses) occurred in every study and the frequency of sighs increased considerably. All these ventilatory changes were reversed by low doses of naloxone or naltrexone; in addition, VT/TT increased well above base line after the administration of these antagonists. However, naloxone did not increase VT/TT when injected without prior administration of DAME. We conclude that 1) the decrease in VT/TT is due to a decrease in respiratory duty cycle; 2) periodic breathing and increased frequency of sighs constitute part of the changes in the ventilatory pattern induced by DAME; 3) a ventilatory withdrawal reaction may occur after a receptor-agonist interaction of short duration; and 4) although enkephalins can modulate ventilation and the breathing pattern in a major way, these data provide no evidence suggesting that this modulation is tonic.  相似文献   

13.
We attempted to determine whether stimulation of pulmonary rapidly adapting receptors (RARs) increase tracheal submucosal gland secretion in anesthetized open-chest dogs. Electroneurographic studies of pulmonary afferents established that RARs but not lung C-fibers were stimulated by intermittent lung collapse during deflation, collapse being produced by removing positive end-expiratory pressure (PEEP, 4 cmH2O) or by applying negative end-expiratory pressure (NEEP, -4 cmH2O). We measured tracheal secretion by the "hillocks" method. Removing PEEP or applying NEEP for 1 min increased secretion from a base line of 6.0 +/- 1.1 to 11.8 +/- 1.7 and 22.0 +/- 2.8 hillocks.cm-2.min-1, respectively (P less than 0.005). After PEEP was restored, dynamic lung compliance (Cdyn) was 37% below control, and secretion remained elevated (P less than 0.05). A decrease in Cdyn stimulates RARs but not other pulmonary afferents. Hyperinflation, which restored Cdyn and RAR activity to control, returned secretion rate to base line. Secretory responses to lung collapse were abolished by vagal cooling (6 degrees C), by pulmonary vagal section, or by atropine. We conclude that RAR stimulation reflexly increases airway secretion. We cannot exclude the possibility that reduced input from slowly adapting stretch receptors contributed to the secretory response.  相似文献   

14.
We have investigated the possibility that afferent vagal stimuli may be responsible for the excessive ventilatory drive during exercise characteristic of many diffuse pulmonary parenchymal diseases. Studies were performed on four conscious dogs with cervical vagal loops, in whom experimental pneumonitis was induced by the intravenous administration of complete Freund's adjuvant. Control measurements were made over a 3-mo interval prior to induction of disease which then ran a course of 6 wk. The disease was characterized histologically by a diffuse interstitial pneumonitis during the first week, and by a proliferative granulomatosis during the subsequent 4-5 wk. Physiologic disturbances at rest included decreased total lung and functional residual capacities; increased lung elastic recoil; and decreased carbon monoxide diffusing capacity. During mild-to-moderate steady-state exercise, the minute volume of ventilation (VE) and respiratory frequency (f) were increased significantly compared to control values; tidal volume (VT) was decreased significantly; and exercise tolerance (ET) was impaired. Complete cervical vagal blockade abolished the abnormally high VE, decreased f, and increased VT in all dogs, and improved ET in at least two dogs. The results indicate that afferent vagal stimuli were responsible for the excessive ventilation during exercise and contributed to the abnormal pattern of breathing.  相似文献   

15.
Variability of resting respiratory drive and timing in healthy subjects   总被引:1,自引:0,他引:1  
Studies of breathing pattern have focused primarily on changes in the mean values of the breathing pattern components, whereas there has been minimal investigation of breath-to-breath variability, which should provide information on the constancy with which respiration is controlled. In this study we examined the variability of breathing pattern both on a breath-to-breath and day-to-day basis by calculating the coefficient of variation (i.e., the standard deviation expressed as a percentage of the mean). By examining breath-to-breath data, we found that the coefficients of variation of tidal volume (VT) and fractional inspiratory time (TI/TT, an index of timing) obtained with an inductive plethysmograph and spirometer were within 1% of each other. Examination of breath-to-breath variability in breathing pattern over a 15-min period in 65 subjects revealed large coefficients of variation, indicating the need to base calculations on a relatively large number of breaths. Less breath-to-breath variability was observed in respiratory frequency [f, 20.8 +/- 11.5% (SD)] and TI/TT (17.9 +/- 6.5%) than in VT (33 +/- 14.9%) and mean inspiratory flow (VT/TI, an index of drive; 31.6 +/- 12.6%; P less than 0.0001). Older subjects (60-81 yr) displayed greater breath-to-breath variability than young subjects (21-50 yr). Use of a mouthpiece did not affect the degree of variability.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We examined the ability of rapidly adapting receptors (RARs) to monitor changes in dynamic lung compliance (Cdyn) in anesthetized spontaneously breathing dogs by recording RAR impulses from the vagus nerves. We decreased Cdyn in steps through the physiological range by briefly restricting lung expansion with an inflatable cuff around the chest and recording the response after deflating the cuff; we restored Cdyn to control by hyperinflating the lungs. Of 45 RARs, 34 were stimulated by a 40 +/- 2% reduction in Cdyn, their inspiratory discharge increasing on average more than threefold. Two-thirds of responsive RARs were stimulated by less than or equal to 20% reductions in Cdyn; in most, firing increased proportionately with lung stiffness (1/Cdyn) as Cdyn was decreased further. Stimulation by reduced Cdyn was not simply a function of the concomitant increase in transpulmonary pressure, because similar increases in pressure produced by increasing tidal volume produced smaller increases in firing. RAR stimulation was unaffected by atropine and, hence, was not dependent on neurally mediated changes in bronchomotor tone. Our results indicate that during spontaneous breathing RARs provide a signal inversely proportional to Cdyn.  相似文献   

17.
Pentobarbital sodium-anesthetized rabbits received 10-min infusions of acetic, lactic, or propionic acid delivered via a catheter to the right atrium at a rate of 1 mmol/min (n = 14). Arterial [H+] increased by 35.8 +/- 7.6 (SD) nmol/l, a decrease in pH of 0.27 +/- 0.04. By the end of the infusion period respiratory frequency (f), tidal volume (VT), and minute ventilation (V) had increased by 15.5 +/- 6.2 breaths/min, 7.3 +/- 2.7 ml, and 0.86 +/- 0.34 l/min, respectively. Arterial PCO2 (PaCO2) increased initially, but isocapnia was established during the latter half of the infusion (delta PaCO2 = 0.4 +/- 2.0 Torr). Bilateral cervical vagotomy eliminated the f response to acid infusions (n = 9, delta f = 0.6 +/- 2.4 breaths/min). The increase in VT (12.6 +/- 3.1 ml) was greater, but that in V (0.39 +/- 0.11 l/min) was less than in intact animals (P less than 0.05). PaCO2 remained elevated throughout the infusion (delta PaCO2 = 5.5 +/- 2.6 Torr), resulting in a greater rise in arterial [H+] (delta[H+]a = 53.6 +/- 6.6 nmol/l, delta pHa = -0.37 +/- 0.04). It is concluded that vagal afferents play a role in the f response to acute metabolic acidosis in rabbits.  相似文献   

18.
Dependences of the mechanical properties of the respiratory system on frequency (f) and tidal volume (VT) in the normal ranges of breathing are not clear. We measured, simultaneously and in vivo, resistance and elastance of the total respiratory system (Rrs and Ers), lungs (RL and EL), and chest wall (Rcw and Ecw) of five healthy anesthetized paralyzed dogs during sinusoidal volume oscillations at the trachea (50-300 ml, 0.2-2 Hz) delivered at a constant mean lung volume. Each dog showed the same f and VT dependences. The Ers and Ecw increased with increasing f to 1 Hz and decreased with increasing VT up to 200 ml. Although EL increased slightly with increasing f, it was independent of VT. The Rcw decreased from 0.2 to 2 Hz at all VT and decreased with increasing VT. Although the RL decreased from 0.2 to 0.6 Hz and was independent of VT, at higher f RL tended to increase with increasing f and VT (i.e., as peak flow increased). Finally, the f and VT dependences of Rrs were similar to those of Rcw below 0.6 Hz but mirrored RL at higher f. These data capture the competing influences of airflow nonlinearities vs. tissue nonlinearities on f and VT dependence of the lung, chest wall, and total respiratory system. More specifically, we conclude that 1) VT dependences in Ers and Rrs below 0.6 Hz are due to nonlinearities in chest wall properties, 2) above 0.6 Hz, the flow dependence of airways resistance dominates RL and Rrs, and 3) lung tissue behavior is linear in the normal range of breathing.  相似文献   

19.
The role of vagal bronchopulmonary C-fiber afferents in eliciting the immediate changes in breathing pattern after acute inhalation of cigarette smoke was assessed with a selective blockade of myelinated vagal afferents (innervating both stretch and irritant receptors) utilizing the method of differential cooling. In 15 of 17 chloralose-anesthetized dogs tested, spontaneous inhalation of cigarette smoke (19.7% avg conc, 500-700 ml vol) reproducibly caused the following immediate responses: apnea, bradycardia, and hypotension. These responses occurred within 1 to 2 breaths of smoke inhalation and were followed by a delayed hyperpnea. The apneic duration reached 326 +/- 33% (SE) (n = 15) of the mean base-line expiratory duration. Differential cold block of both vagi (coolant temperature 8.4 +/- 0.3 degrees C) abolished the reflex apnea induced by a positive-pressure (7-10 cmH2O) lung inflation but did not affect the apneic response to smoke inhalation (345 +/- 35%). The smoke-induced apnea was completely abolished by lowering the coolant temperature to -1.3 +/- 0.2 degrees C (n = 10) or by bilateral vagotomy (n = 5) and returned to the control level after both vagi were rewarmed. Based on these results, we suggest that the immediate apneic response to inhaled cigarette smoke is elicited by a stimulation of vagal C-fiber afferents in the lungs and airways.  相似文献   

20.
We have previously shown that raising arterial PCO(2) (Pa(CO(2))) by small increments in dogs ventilated below the apneic threshold (AT) results in almost complete tracheal constriction before the return of phrenic activity (Dickstein JA, Greenberg A, Kruger J, Robicsek A, Silverman J, Sommer L, Sommer D, Volgyesi G, Iscoe S, and Fisher JA. J Appl Physiol 81: 1844-1849, 1996). We hypothesized that, if increasing chemical drive above the AT mediates increasing constrictor drive to tracheal smooth muscle, then pulmonary slowly adapting receptor input should elicit more tracheal dilation below the AT than above. In six methohexital sodium-anesthetized, paralyzed, and ventilated dogs, we measured changes in tracheal diameter in response to step increases in tidal volume (VT) or respiratory frequency (f) below and above the AT at constant Pa(CO(2)) ( approximately 40 and 67 Torr, respectively). Increases in VT (400-1,200 ml) caused significantly more (P = 0.005) tracheal dilation below than above AT (7.0 +/- 2.2 vs. 2.8 +/- 1.0 mm, respectively). In contrast, increases in f (14-22 breaths/min) caused similar (P = 0.93) tracheal dilations below and above (1.0 +/- 1.3 and 1.0 +/- 0.8 mm, respectively) AT. The greater effectiveness of dilator stimuli below compared with above the AT is consistent with the hypothesis that drive to tracheal smooth muscle increases even after attainment of maximal constriction. Our results emphasize the importance of controlling PCO(2) with respect to the AT when tracheal smooth muscle tone is experimentally altered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号