首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The haemopoietic stem cell (HSC) has long been regarded as an archetypal, tissue specific, stem cell, capable of completely regenerating haemopoiesis after myeloablation. It has proved relatively easy to harvest HSC, from bone marrow or peripheral blood. In turn, isolation of these cells has allowed therapeutic stem cell transplantation protocols to be developed, that capitalise on their prodigious self renewal and proliferative capabilities. Ex vivo approaches have been described to isolate, genetically manipulateand expand pluripotent stem cell subsets. These techniques have been crucial to the development of gene therapy, and may allow adults to enjoy the potential advantages of cord blood transplantation. Recently, huge conceptual changes have occurred in stem cell biology. In particular, the dogma that, in adults, stem cells are exclusively tissue restricted has been questioned and there is great excitement surrounding the potential plasticity of these cells, with the profound implications that this has, for developing novel cellular therapies. Mesenchymal stem cells, multipotent adult progenitor cells and embryonic stem cells are potential sources of cells for transplantation purposes. These cells may be directed toproduce HSC, in vitro and in the future may be used for therapeutic, or drug development, purposes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The potential clinical use of stem cells for cell transplantation therapies to replace defective genes in myopathies is an area of intense investigation. Precursor cells derived from non-muscle tissue with myogenic potential have been identified in many tissues, including bone marrow and dermis, although the status of these putative stem cells requires clarification. The incorporation of circulating bone-marrow derived stem cells into regenerating adult skeletal muscle has been demonstrated in mice but the contribution of donor cells is so minimal that it would appear clinically irrelevant at this stage. The possibility of a true stem cell subpopulation within skeletal muscle that replenishes the satellite cells (conventional muscle precursors on the surface of myofibres) is also very attractive as a superior source of myoblasts for muscle construction. A full understanding of the intrinsic factors (i.e. gene expression within the stem cell) and extrinsic factors (i.e. signals from the external environment) which control the commitment of stem cells to the myogenic lineage, and the conditions which favour stem cell expansion in vivo is required before stem cells can be seriously considered for clinical cell therapy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Distinct cell populations with regenerative capacity have been reported to contribute to myofibres after skeletal muscle injury, including non-satellite cells as well as myogenic satellite cells. However, the relative contribution of these distinct cell types to skeletal muscle repair and homeostasis and the identity of adult muscle stem cells remain unknown. We generated a model for the conditional depletion of satellite cells by expressing a human diphtheria toxin receptor under control of the murine Pax7 locus. Intramuscular injection of diphtheria toxin during muscle homeostasis, or combined with muscle injury caused by myotoxins or exercise, led to a marked loss of muscle tissue and failure to regenerate skeletal muscle. Moreover, the muscle tissue became infiltrated by inflammatory cells and adipocytes. This localised loss of satellite cells was not compensated for endogenously by other cell types, but muscle regeneration was rescued after transplantation of adult Pax7(+) satellite cells alone. These findings indicate that other cell types with regenerative potential depend on the presence of the satellite cell population, and these observations have important implications for myopathic conditions and stem cell-based therapeutic approaches.  相似文献   

4.
Recent unexpected observations in adult rodents that stem/progenitor cells located in the bone marrow, but also in other tissues, could, after their transplantation to an irradiated host contribute to the regeneration of damaged organs such as brain, liver, pancreas or muscle, have raised much hope for future therapeutic applications. These data have also initially been interpreted as a proof of a possible transdifferentiation or plasticity of adult stem cells located in these tissues. Additional experiments rigorously analyzed have tempered initial enthusiasm, by showing that if marrow cells do migrate in damaged muscles and liver, their contribution to organ repair is low, and in some cases, explained by cell fusion. Nevertheless, among bone marrow cells, two categories of stem cells now emerge that have a potentially tremendous interest in cell therapy, if we succeed in understanding how to purify, amplify and differentiate these more efficiently and reproducibly.  相似文献   

5.
A major challenge in cardiovascular regenerative medicine is the development of novel therapeutic strategies to restore the function of cardiac muscle in the failing heart. The heart has historically been regarded as a terminally differentiated organ that does not have the potential to regenerate. This concept has been updated by the discovery of cardiac stem and progenitor cells that reside in the adult mammalian heart. Whereas diverse types of adult cardiac stem or progenitor cells have been described, we still do not know whether these cells share a common origin. A better understanding of the physiology of cardiac stem and progenitor cells should advance the successful use of regenerative medicine as a viable therapy for heart disease. In this review, we summarize current knowledge of the various adult cardiac stem and progenitor cell types that have been discovered. We also review clinical trials presently being undertaken with adult stem cells to repair the injured myocardium in patients with coronary artery disease.  相似文献   

6.
Embryonic stem cells have revolutionised our understanding of normal and deregulated growth and development. The potential to produce cells and tissues as needed offers enormous therapeutic potential. The use of these cells, however, is accompanied by ongoing ethical, religious and biomedical issues. The expansion potential and plasticity of adult stem cells have therefore received much interest. Adult skeletal muscle is highly adaptable, responding to both the hypertrophic and degenerative stresses placed upon it. This extreme plasticity is in part regulated by resident stem cells. In addition to regenerating muscle, if exposed to osteogenic or adipogenic inducers, these cells spontaneously form osteoblasts or adipocytes. The potential for and heterogeneity of muscle stem cells is underscored by the observation that CD45+ muscle side population cells are capable of reconstituting bone marrow in lethally irradiated mice and of contributing to neo-vascularisation of regenerating muscle. Finally, first attempts to replace infarcted myocardium relied on injection of skeletal myoblasts into the heart. Cells successfully engrafted and cardiac function was improved. Harnessing their differentiation/trans-differentiation capacity provides enormous potential for adult stem cells. In this review, current understanding of the different stem cells within muscle will be discussed as will their potential utility for regenerative medicine.  相似文献   

7.
Myocardial regeneration with bone-marrow-derived stem cells   总被引:5,自引:0,他引:5  
Despite significant therapeutic advances, heart failure remains the predominant cause of mortality in the Western world. Ischaemic cardiomyopathy and myocardial infarction are typified by the irreversible loss of cardiac muscle (cardiomyocytes) and vasculature composed of endothelial cells and smooth muscle cells, which are essential for maintaining cardiac integrity and function. The recent identification of adult and embryonic stem cells has triggered attempts to directly repopulate these tissues by stem cell transplantation as a novel therapeutic option. Reports describing provocative and hopeful examples of myocardial regeneration with adult bone-marrow-derived stem and progenitor cells have increased the enthusiasm for the use of these cells, yet many questions remain regarding their therapeutic potential and the mechanisms responsible for the observed therapeutic effects. In this review article we discuss the current preclinical and clinical advances in bone-marrow-derived stem or progenitor cell therapies for regeneration or repair of the ischaemic myocardium and their multiple related mechanisms involved in myocardial repair and regeneration.  相似文献   

8.
Heart failure is becoming a major issue for public health in western countries and the effect of currently available therapies is limited. Therefore cell transplantation was developed as an alternative strategy to improve cardiac structure and function. This review describes the multiple cell types and clinical trials considered for use in this indication. Most studies have been developed in models of post-ischemic heart failure. The transplantation of fetal or neonatal cardiomyocytes has proven to be functionally successful, but ethical as well as immunological and technical reasons make their clinical use limited. Recent reports, however, suggested that adult autologous cardiomyocytes could be prepared from stem cells present in various tissues (bone marrow, vessels, adult heart itself, adipose tissue). Alternatively, endothelial progenitors originating from bone marrow or peripheral blood could promote the neoangiogenesis within the scar tissue. Hematopietic stem cells prepared from bone marrow or peripheral blood have been proposed but their differentiation ability seems limited. Finally, the transplantation of skeletal muscle cells (myoblasts) in the infarcted area improved myocardial function, in correlation with the development of skeletal muscle tissue in various animal models. The latter results paved the way for the development of a first phase I clinical trial of myoblast transplantation in patients with severe post-ischemic heart failure. It required the scale-up of human cell production according to good manufacturing procedures, started in june 2000 in Paris and was terminated in november 2001, and was followed by several others. The results were encouraging and prompted the onset of a blinded, multicentric phase II clinical trial for skeletal muscle cells transplantation. Meanwhile, phase I clinical trials also evaluate the safeness and efficacy of various cell types originating from the bone marrow or the peripheral blood. However, potential side effects related to the biological properties of the cells or the delivery procedures are being reported. High quality clinical trials supported by strong pre-clinical data will help to evaluate the role of cell therapy as a potential treatment for heart failure.  相似文献   

9.
Preclinical and clinical trials of stem cell therapy have been carried out for treating a broad spectrum of diseases using several types of adult stem cells. While encouraging therapeutic results have been obtained, much remains to be investigated regarding the best cell type to use, cell dosage, delivery route, long-term safety, clinical feasibility, and ultimately treatment cost. Logistic aspects of stem cell therapeutics remain an area that requires urgent attention from the medical community. Recent cardiovascular trial studies have demonstrated that growth factors and cytokines derived from the injected stem cells and host tissue appear to contribute largely to the observed therapeutic benefits, indicating that trophic actions rather than the multilineage potential (or stemness) of the administered stem cells may provide the underlying tissue healing power. However, the capacity for trophic factor production can be aberrantly downregulated as seen in human heart disease. Skeletal muscle is a dynamic tissue with an impressive ability to continuously respond to environmental stimuli. Indeed, a relation exists between active skeletal muscle and low cardiovascular risk, highlighting the critical link between the skeletal muscle and cardiovascular systems. Adding to this notion are recent studies showing that stem cells injected into skeletal muscle can rescue the failing rodent heart through activation of the muscle trophic factor network and mobilization of bone marrow multilineage progenitor cells. However, aging and disease can adversely affect the host tissue into which stem cells are injected. A better understanding of the host tissue response in stem cell therapy is necessary to advance the field and bridge the gap between preclinical and clinical findings.  相似文献   

10.
11.
Multipotent adult stem cells constitute an unlimited source of differentiated cells that could be used in pharmacological studies and in medicine. The presence of stem cells in different tissues, such as bone marrow, skin, muscle, has been reported. However, stem cells are rare in these tissues, are difficult to isolate and to maintain ex vivo. As adipose tissue allows extraction of a large volume of tissue with limited morbidity, this tissue could be an exciting alternative stem cell source. We have recently identified and isolated multipotent stem cells from adipose tissue of young donors. These cells, named human Multipotent Adipose-Derived Stem (hMADS) cells, exhibit features of stem cells, i.e. a high ability to self-renew and the capacity to differentiate in different lineages at the single cell level. The adipocyte differentiation of hMADS cells has been thoroughly studied and differentiated cells exhibit the unique characteristics of human adipocytes. The effects of HIV drugs on the development of hMADS cells into adipocytes will be discussed. Finally, the therapeutic potential of hMADS cells has been revealed after their transplantation into muscles of mdx mice, an animal model of Duchenne muscular dystrophy. Therefore, hMADS cells provides a powerful cellular model for drug screenings and their regenerative properties suggest that these cells could be an important tool for cell-mediated therapy.  相似文献   

12.
The prognosis of patients with myocardial infarction (MI) and resultant chronic heart failure remains extremely poor despite continuous advancements in optimal medical therapy and interventional procedures. Animal experiments and clinical trials using adult stem cell therapy following MI have shown a global improvement of myocardial function. The emergence of stem cell transplantation approaches has recently represented promising alternatives to stimulate myocardial regeneration. Regarding their tissue‐specific properties, cardiac stem cells (CSCs) residing within the heart have advantages over other stem cell types to be the best cell source for cell transplantation. However, time‐consuming and costly procedures to expanse cells prior to cell transplantation and the reliability of cell culture and expansion may both be major obstacles in the clinical application of CSC‐based transplantation therapy after MI. The recognition that the adult heart possesses endogenous CSCs that can regenerate cardiomyocytes and vascular cells has raised the unique therapeutic strategy to reconstitute dead myocardium via activating these cells post‐MI. Several strategies, such as growth factors, mircoRNAs and drugs, may be implemented to potentiate endogenous CSCs to repair infarcted heart without cell transplantation. Most molecular and cellular mechanism involved in the process of CSC‐based endogenous regeneration after MI is far from understanding. This article reviews current knowledge opening up the possibilities of cardiac repair through CSCs activation in situ in the setting of MI.  相似文献   

13.
Type 1 diabetes mellitus has received much attention recently as a potential target for the emerging science of stem cell medicine. In this autoimmune disease, the insulin-secreting beta-cells of the pancreas are selectively and irreversibly destroyed by autoimmune assault. Advances in islet transplantation procedures now mean that patients with the disease can be cured by transplantation of primary human islets of Langerhans. A major drawback in this therapy is the availability of donor islets, and the search for substitute transplant tissues has intensified in the last few years. This review will describe the essential requirements of a material designed as a replacement beta-cell and will look at the potential sources of such replacements. These include embryonic stem (ES) cells and multipotent adult stem/progenitor cells from a range of tissues including the pancreas, intestine, liver, bone marrow and brain. These stem cell populations will be evaluated and the different experimental approaches that have been employed to derive functional insulin-expressing cells will be discussed. The review will also look at the capability of human ES (hES) cells generated by somatic cell nuclear transfer and some adult stem cell populations such as bone marrow-derived stem cells, to offer autologous transplant material that would remove the need for immunosuppression. In patients with Type 1 diabetes, auto-reactive T-cells are programmed to recognise the insulin-producing beta-cells. As a result, for therapeutic replacement tissues, it may be more sensible to derive cells that behave like beta-cells but are immunologically distinct. Thus, the potential of cells derived from non-beta-cell origin to avoid the autoimmune response will also be discussed. Finally, the review will summarise the future prospects for stem cell therapies for diabetes and will highlight some of the problems that may be faced by researchers working in this area, such as malignancy, irreproducible differentiation strategies, immune-system rejection and social and ethical concerns over the use of hES cells.  相似文献   

14.
In the past few years, stem cells have become the focus of research by regenerative medicine professionals and tissue engineers. Embryonic stem cells, although capable of differentiating into cell lineages of all three germ layers, are limited in their utilization due to ethical issues. In contrast, the autologous harvest and subsequent transplantation of adult stem cells from bone marrow, adipose tissue or blood have been experimentally utilized in the treatment of a wide variety of diseases ranging from myocardial infarction to Alzheimer’s disease. The physiologic consequences of stem cell transplantation and its impact on functional recovery have been studied in countless animal models and select clinical trials. Unfortunately, the bench to bedside translation of this research has been slow. Nonetheless, stem cell therapy has received the attention of spinal surgeons due to its potential benefits in the treatment of neural damage, muscle trauma, disk degeneration and its potential contribution to bone fusion.  相似文献   

15.
The potential of muscle stem cells.   总被引:8,自引:0,他引:8  
Skeletal muscle contains two types of stem cells: satellite cells, which function as myogenic precursors, and a population of multipotent adult stem cells. Satellite cells are believed to form a stable, self-renewing pool of stem cells in adult muscle where they function in tissue growth and repair. An additional stem cell population in adult muscle displays a remarkable capacity to differentiate into hematopoietic cells as well as muscle following transplantation. This article discusses the characteristics and properties of these cell populations, the relationship between them, and the potential for stem cell-based muscle therapeutics.  相似文献   

16.
The therapeutic potential of stem cells in heart disease   总被引:1,自引:0,他引:1  
Abstract.  Coronary heart disease and chronic heart failure are common and have an increasing frequency. Although interventional and conventional drug therapy may delay ventricular remodelling, there is no basic therapeutic regime available for preventing or even reversing this process. Chronic coronary artery disease and heart failure impairs quality of life and are associated with subsequent worsening of the cardiac pump function. Numerous studies within the past few years have been demonstrated, that the intracoronary stem cell therapy has to be considered as a safe therapeutic procedure in heart disease, when destroyed and/or compromised heart muscle must be regenerated. This kind of cell therapy with autologous bone marrow cells is completely justified ethically, except for the small numbers of patients with direct or indirect bone marrow disease (e.g. myeloma, leukaemic infiltration) in whom there would be lesions of mononuclear cells. Several preclinical as well as clinical trials have shown that transplantation of autologous bone marrow cells or precursor cells improved cardiac function after myocardial infarction and in chronic coronary heart disease. The age of infarction seems to be irrelevant to regenerative potency of stem cells, since stem cells therapy in old infarctions (many years old) is almost equally effective in comparison to previous infarcts. Further indications are non-ischemic cardiomyopathy (dilative cardiomyopathy) and heart failure due to hypertensive heart disease.  相似文献   

17.
肌源干细胞研究进展   总被引:1,自引:0,他引:1  
目前已证实肌肉是具有多向分化潜能的成体干细胞的一个储存库。研究者认为骨骼肌中至少有两种干细胞:肌卫星细胞(muscle satellite cells)和肌源干细胞(muscle-derived stem cells, MDSCs),并且使用几种方法从肌肉中分离获得不同类群的MDSCs。研究发现分离这些细胞的方法影响干细胞的特征。本文对MDSCs的行为、生物学特征、分离、分化及其在治疗组织器官修复和再生中应用的可能性等作一概括介绍。  相似文献   

18.
Aging is accompanied by the functional decline of cells, tissues, and organs, as well as, a striking increase in susceptibility to a wide range of diseases. Within a tissue, both differentiated cells and adult stem cells are susceptible to intrinsic and extrinsic changes while aging. Muscle derived stem cells (MDSCs) are tissue specific stem cells which have been studied well for their multipotential nature. Although there are reports relating to diminished function and regenerative capacity of aged MDSCs as compared to their young counterparts, not much has been reported relating to the concomitant gain in unipotent nature of aged MDSCs. In this study, we report an inverse correlation between aging and expression of adult/mesenchymal stem cell markers and a direct correlation between aging and myogenecity in MDSCs. Aged MDSCs were able to generate a greater number of dystrophin positive myofibres, as compared to, the young MDSCs when transplanted in muscle of dystrophic mice. Our data, therefore, suggests that aging stress adds to the decline in stem cell characteristics with a concomitant increase in unipotency, in terms of, myogenecity of MDSCs. This study, hence, also opens the possibilities of using unipotent aged MDSCs as potential candidates for transplantation in patients with muscular dystrophies.  相似文献   

19.
Stem cell plasticity: from transdifferentiation to macrophage fusion   总被引:13,自引:0,他引:13  
The past 5 years have witnessed an explosion of interest in using adult-derived stem cells for cell and gene therapy. This has been driven by a number of findings, in particular, the possibility that some adult stem cells can differentiate into non-autologous cell types, and also the discovery of multipotential stem cells in adult bone marrow. These discoveries suggested a quasi-alchemical nature of cells derived from adult organs, thus raising new and exciting therapeutic possibilities. Recent data, however, argue against the whole idea of stem cell 'plasticity', and bring into question the therapeutic strategies based upon this concept. Here, we will review the current state of knowledge in the field and discuss some of the clinical implications.  相似文献   

20.
Apelin, a member of the adipokine family, is widely distributed in the body and exerts cytoprotective effects on many organs. Apelin isoforms are involved in different physiological processes, including regulation of the cardiovascular system, cardiac contractility, angiogenesis, and energy metabolism. Several investigations have been performed to study the effect of apelin on stem cell therapy. This review aims to summarize the literature representing the effects of apelin on stem cell properties. Furthermore, this review discusses the therapeutic potential of apelin‐treated stem cells for cardiovascular diseases and demonstrates the effect of stem cells overexpressing apelin on energy metabolism. Stem cells with their unique characteristics play a crucial role in the maintenance of tissue integrity. These cells participate in tissue regeneration via multiple mechanisms. Although preclinical and clinical studies have demonstrated the therapeutic potential of stem cells in various diseases, their application in regenerative medicine has not been efficient. A number of strategies such as genetic modification or treatment of stem cells with different factors have been used to improve the efficacy of cell therapy and to increase their survival after transplantation. This article reviews the effect of apelin treatment on the efficacy of cell therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号