首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A pathogen can readily mutate to infect new host types, but this does not guarantee successful establishment in the new habitat. What factors, then, dictate emergence success? One possibility is that the pathogen population cannot sustain itself on the new host type (i.e. host is a sink), but migration from a source population allows adaptive sustainability and eventual emergence by delivering beneficial mutations sampled from the source''s standing genetic variation. This idea is relevant regardless of whether the sink host is truly novel (host shift) or whether the sink is an existing or related, similar host population thriving under conditions unfavourable to pathogen persistence (range expansion). We predicted that sink adaptation should occur faster under range expansion than during a host shift owing to the effects of source genetic variation on pathogen adaptability in the sink. Under range expansion, source migration should benefit emergence in the sink because selection acting on source and sink populations is likely to be congruent. By contrast, during host shifts, source migration is likely to disrupt emergence in the sink owing to uncorrelated selection or performance tradeoffs across host types. We tested this hypothesis by evolving bacteriophage populations on novel host bacteria under sink conditions, while manipulating emergence via host shift versus range expansion. Controls examined sink adaptation when unevolved founding genotypes served as migrants. As predicted, adaptability was fastest under range expansion, and controls did not adapt. Large, similar and similarly timed increases in fitness were observed in the host-shift populations, despite declines in mean fitness of immigrants through time. These results suggest that source populations are the origin of mutations that drive adaptive emergence at the edge of a pathogen''s ecological or geographical range.  相似文献   

3.
Family data for 14 biochemical genetic markers of squirrel monkeys (genusSaimiri) were derived from 73 pedigreed progeny and both parents of each, as well as from 16 additional progeny and one parent of each. The data for each marker and the phenotypic patterns were consistent with autosomal codominant inheritance. It was concluded from the genetic marker data that the pedigree records of seven progeny were incorrect. Retrospective investigations of colony records followed by typing of animals that might possibly have been a parent enabled five of the pedigree records to be corrected. Although five of the pedigree errors were cases of mistaken paternity, the other two apparently were the consequence of infant swapping between dams shortly after birth. Because squirrel monkeys exhibit a high degree of allomaternal behavior, infant swapping between dams may occur more frequently than in many other nonhuman primate species.This research was supported in part by NIH Grant P40 RR01254.  相似文献   

4.
A phylogenetic analysis of 14 complete simian virus 40 (SV40) genomes was conducted in order to determine strain relatedness and the extent of genetic variation. This analysis included infectious isolates recovered between 1960 and 1999 from primary cultures of monkey kidney cells, from contaminated poliovaccines and an adenovirus seed stock, from human malignancies, and from transformed human cells. Maximum-parsimony and distance methods revealed distinct SV40 clades. However, no clear patterns of association between genotype and viral source were apparent. One clade (clade A) is derived from strain 776, the reference strain of SV40. Clade B contains isolates from poliovaccines (strains 777 and Baylor), from monkeys (strains N128, Rh911, and K661), and from human tumors (strains SVCPC and SVMEN). Thus, adaptation is not essential for SV40 survival in humans. The C terminus of the T-antigen (T-ag-C) gene contains the highest proportion of variable sites in the SV40 genome. An analysis based on just the T-ag-C region was highly congruent with the whole-genome analysis; hence, sequencing of just this one region is useful in strain identification. Analysis of an additional 16 strains for which only the T-ag-C gene was sequenced indicated that further SV40 genetic diversity is likely, resulting in a provisional clade (clade C) that currently contains strains associated with human tumors and human strain PML-1. Four other polymorphic regions in the genome were also identified. If these regions were analyzed in conjunction with the T-ag-C region, most of the phylogenetic signal could be captured without complete genome sequencing. This report represents the first whole-genome approach to establishing phylogenetic relatedness among different strains of SV40. It will be important in the future to develop a more complete catalog of SV40 variation in its natural monkey host, to determine if SV40 strains from different clades vary in biological or pathogenic properties, and to identify which SV40 strains are transmissible among humans.  相似文献   

5.
转基因植物的表型变异、分子检测与遗传分析   总被引:6,自引:0,他引:6  
本讨论了转化方法、体细胞克隆和选育过程等影响转基因植物表型变异的因素,并对转基因植物不同群体的表型变异组成和效应进行了比较分析,提出了转基因植物分子检测和遗传分析的技术策略。多数情况下,分析转基因植物回交后代(BClF1)比分析T1代能获得更可靠和有价值的结论。  相似文献   

6.

Background

The theory of genomic selection is based on the prediction of the effects of quantitative trait loci (QTL) in linkage disequilibrium (LD) with markers. However, there is increasing evidence that genomic selection also relies on "relationships" between individuals to accurately predict genetic values. Therefore, a better understanding of what genomic selection actually predicts is relevant so that appropriate methods of analysis are used in genomic evaluations.

Methods

Simulation was used to compare the performance of estimates of breeding values based on pedigree relationships (Best Linear Unbiased Prediction, BLUP), genomic relationships (gBLUP), and based on a Bayesian variable selection model (Bayes B) to estimate breeding values under a range of different underlying models of genetic variation. The effects of different marker densities and varying animal relationships were also examined.

Results

This study shows that genomic selection methods can predict a proportion of the additive genetic value when genetic variation is controlled by common quantitative trait loci (QTL model), rare loci (rare variant model), all loci (infinitesimal model) and a random association (a polygenic model). The Bayes B method was able to estimate breeding values more accurately than gBLUP under the QTL and rare variant models, for the alternative marker densities and reference populations. The Bayes B and gBLUP methods had similar accuracies under the infinitesimal model.

Conclusions

Our results suggest that Bayes B is superior to gBLUP to estimate breeding values from genomic data. The underlying model of genetic variation greatly affects the predictive ability of genomic selection methods, and the superiority of Bayes B over gBLUP is highly dependent on the presence of large QTL effects. The use of SNP sequence data will outperform the less dense marker panels. However, the size and distribution of QTL effects and the size of reference populations still greatly influence the effectiveness of using sequence data for genomic prediction.  相似文献   

7.
The mechanism underlying the maintenance of adaptive genetic variation is a long-standing question in evolutionary genetics. There are two concepts (mutation-selection balance and balancing selection) which are based on the phenotypic differences between alleles. Mutation - selection balance and balancing selection cannot properly explain the process of gene substitution, i.e. the molecular evolution of quantitative trait loci affecting fitness. I assume that such loci have non-essential functions (small effects on fitness), and that they have the potential to evolve into new functions and acquire new adaptations. Here I show that a high amount of neutral polymorphism at these loci can exist in real populations. Consistent with this, I propose a hypothesis for the maintenance of genetic variation in life history traits which can be efficient for the fixation of alleles with very small selective advantage. The hypothesis is based on neutral polymorphism at quantitative trait loci and both neutral and adaptive gene substitutions. The model of neutral - adaptive conversion (NAC) assumes that neutral alleles are not neutral indefinitely, and that in specific and very rare situations phenotypic (relative fitness) differences between them can appear. In this paper I focus on NAC due to phenotypic plasticity of neutral alleles. The important evolutionary consequence of NAC could be the increased adaptive potential of a population. Loci responsible for adaptation should be fast evolving genes with minimally discernible phenotypic effects, and the recent discovery of genes with such characteristics implicates them as suitable candidates for loci involved in adaptation.  相似文献   

8.
It has been shown repeatedly that numerous cumulative changes occur in chromosomes of D. melanogaster, as an effect of ageing which, especially in the homozygous state, significantly affect different fitness components of their carriers. It appears that the observed age-affected events are produced by systematic and ontogenetically programmed changes in genetic loads at specific chromosomes, which are transferable to following generations. It has been suggested that such changes could be of mutational origin, and that they cold be more frequent at gene loci which are epigenetically active during ontogenesis.It was demonstrated that a large sample of identical chromosomes behave quite differently in the homozygous state when obtained from aged compared to non-aged parents, producing a significant decrease in relative viability, length of preadult development, and longevity of their carriers, as well as in the frequency of recombinations of corresponding chromosomes. A specfic treatment by streptomycin resulted in remarkably milder effects of ageing, which is in accordance with the statement of some authors that such a treatment may diminish the frequency of spontaneous recessive mutations in their carriers. Thus the observed age-affected changes could be an important source of developmental and evolutionary variation of living organisms.  相似文献   

9.
10.

Background and aims

Characterisation of genetic variation in nitrate accumulation by lettuce will inform strategies for selecting low-nitrate varieties more capable of meeting EU legislation on harvested produce. This study uses a population of recombinant inbred lines (RILs) of lettuce to determine how genotypic differences influence N uptake, N assimilation and iso-osmotic regulation, and to identify key related traits prior to future genetic analysis.

Methods

Measurements were made on plants grown to maturity in soil fertilised with ammonium nitrate, and in a complete nutrient solution containing only nitrate-N. A simple osmotic balance model was developed to estimate variations in shoot osmotic concentration between RILs.

Results

There were significant genotypic variations in nitrate accumulation when plants were grown either with nitrate alone or in combination with ammonium. Ammonium-N significantly reduced nitrate in the shoot but had no effect on its relative variability, or on the ranking of genotypes. Shoot nitrate-N was correlated positively with total-N and tissue water, and negatively with assimilated-C in both experiments. Corresponding relationships with assimilated-N and shoot weight were weaker. Estimated concentrations of total osmotica in shoot sap were statistically identical in all RILs, despite variations in nitrate concentration across the population.

Conclusions

Approximately 73% of the genotypic variability in nitrate accumulation within the population of RILs arose from differences in nitrate uptake and only 27% from differences in nitrate assimilated, irrespective of whether or not part of the N was recovered as ammonium, or whether the plants were grown in soil or solution culture. Genotypic variability in nitrate accumulation was associated with changes in concentrations of other endogenous solutes (especially carboxylates and soluble carbohydrates) and of tissue water, which minimised differences in osmotic potential of shoot sap between RILs. This offers the opportunity of using the regulation of these solutes as additional traits to manipulate nitrate accumulation.  相似文献   

11.
Genomic imprinting, where the effects of alleles depend on their parent-of-origin, can be an important component of the genetic architecture of complex traits. Although there has been a rapidly increasing number of studies of genetic architecture that have examined imprinting effects, none have examined whether imprinting effects depend on genetic background. Such effects are critical for the evolution of genomic imprinting because they allow the imprinting state of a locus to evolve as a function of genetic background. Here we develop a two-locus model of epistasis that includes epistatic interactions involving imprinting effects and apply this model to scan the mouse genome for loci that modulate the imprinting effects of quantitative trait loci (QTL). The inclusion of imprinting leads to nine orthogonal forms of epistasis, five of which do not appear in the usual two-locus decomposition of epistasis. Each form represents a change in the imprinting status of one locus across different classes of genotypes at the other locus. Our genome scan identified two different locus pairs that show complex patterns of epistasis, where the imprinting effect at one locus changes across genetic backgrounds at the other locus. Thus, our model provides a framework for the detection of genetic background-dependent imprinting effects that should provide insights into the background dependence and evolution of genomic imprinting. Our application of the model to a genome scan supports this assertion by identifying pairs of loci that show reciprocal changes in their imprinting status as the background provided by the other locus changes.  相似文献   

12.
13.
Macrobrachium rosenbergii, the giant freshwater prawn, is an important source of high quality protein and occurs naturally in rivers as well as commercial farms in South and South‐East Asia, including Bangladesh. This study investigated the genetic variation and population structure of M. rosenbergii sampled from four rivers in Bangladesh (sample size ranged from 19 to 20), assessing sequence variation, both in the mitochondrial cytochrome oxidase subunit 1 (CO1) gene and in 106 single nucleotide polymorphisms (SNPs) sampled randomly from the genome with double digest RAD sequencing (ddRADseq). The mitochondrial variation presented a shallow genealogy with high haplotype diversity (= 0.95), reflecting an expansion in population size for the last ~82 kyr. Based on the CO1 variation the current effective population size (Ne) was 9.7 × 106 (CI: 1.33 × 106 – 35.84 × 106) individuals. A significant population differentiation was observed with the mitochondrial CO1 sequence variation and based on the ddRADseq variation, which could be traced to the divergence of the population in the Naf River in the South‐East border with Myanmar from the other populations. A differentiation in mtDNA haplotype frequencies was also observed between the Biskhali River and the Karnaphuli Rivers in eastern Bangladesh. This study demonstrated the use of high‐throughput genotyping based on the ddRADseq method to reveal population structure at a small geographical scale for an important freshwater prawn. The information from this study can be utilized for management and conservation of this species in Bangladesh.  相似文献   

14.
The St. Lawrence Island Eskimos: genetic variation and genetic distance   总被引:4,自引:0,他引:4  
The Eskimos of St. Lawrence Island have been typed for genetic variation at 44 discrete genetic loci. Three private polymorphisms, at the 2,3-diphosphoglycerate mutase, peptidase B, and purine nucleoside phosphorylase loci, have been observed, which may be useful in future studies of genetic relationships between Eskimos and other circumpolar populations. Genetic distance analysis reveals a close relationship between the St. Lawrence Island Eskimos and other Eskimo populations and that the Eskimo populations form a distinct cluster from Amerindian populations. The St. Lawrence Island Eskimos appear to be more similar to Asiatic Eskimos than to other groups. Caucasian admixture in this population is estimated to be between 2 and 7%.  相似文献   

15.
16.
Cryptic genetic variation (CGV) is defined as the genetic variation that has little effect on phenotypic variation under a normal condition, but contributes to heritable variation under environmental or genetic perturbations. Genetic buffering systems that suppress the expression of CGV and store it in a population are called genetic capacitors, and the opposite systems are called genetic potentiators. One of the best‐known candidates for a genetic capacitor and potentiator is the molecular chaperone protein, HSP90, and one of its characteristics is that it affects the genetic variation in various morphological traits. However, it remains unclear whether the wide‐ranging effects of HSP90 on a broad range of traits are a general feature of genetic capacitors and potentiators. In the current study, I searched for novel genetic capacitors and potentiators for quantitative bristle traits of Drosophila melanogaster and then investigated the trait specificity of their genetic buffering effect. Three bristle traits of D. melanogaster were used as the target traits, and the genomic regions with genetic buffering effects were screened using the 61 genomic deficiencies examined previously for genetic buffering effects in wing shape. As a result, four and six deficiencies with significant effects on increasing and decreasing the broad‐sense heritability of the bristle traits were identified, respectively. Of the 18 deficiencies with significant effects detected in the current study and/or by the previous study, 14 showed trait‐specific effects, and four affected the genetic buffering of both bristle traits and wing shape. This suggests that most genetic capacitors and potentiators exert trait‐specific effects, but that general capacitors and potentiators with effects on multiple traits also exist.  相似文献   

17.
N Saha 《Human heredity》1987,37(2):86-93
Serum protein (albumin, haptoglobin, ceruloplasmin, transferrin and group-specific component), haemoglobin, and red cell enzyme (glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, acid phosphatase, esterase D, adenylate kinase, glyoxalase I, phosphoglucomutase, lactate dehydrogenase, malate dehydrogenase, phosphohexose isomerase and superoxide dismutase) polymorphisms were studied among the Bengali Muslims of Bangladesh. In general, the gene frequencies of the polymorphic systems were similar to those in West Bengal and Assam. There appears to be a relatively strong Mongoloid influence in the present population as evidenced by the presence of HbE and TfDChi, higher frequencies of Hp1 and GcIF, and a lower AK2 frequency.  相似文献   

18.
Deng M  Yu C  Liang Q  He RL  Yau SS 《PloS one》2011,6(3):e17293

Background

Most existing methods for phylogenetic analysis involve developing an evolutionary model and then using some type of computational algorithm to perform multiple sequence alignment. There are two problems with this approach: (1) different evolutionary models can lead to different results, and (2) the computation time required for multiple alignments makes it impossible to analyse the phylogeny of a whole genome. This motivates us to create a new approach to characterize genetic sequences.

Methodology

To each DNA sequence, we associate a natural vector based on the distributions of nucleotides. This produces a one-to-one correspondence between the DNA sequence and its natural vector. We define the distance between two DNA sequences to be the distance between their associated natural vectors. This creates a genome space with a biological distance which makes global comparison of genomes with same topology possible. We use our proposed method to analyze the genomes of the new influenza A (H1N1) virus, human rhinoviruses (HRV) and mammalian mitochondrial. The result shows that a triple-reassortant swine virus circulating in North America and the Eurasian swine virus belong to the lineage of the influenza A (H1N1) virus. For the HRV and mammalian mitochondrial genomes, the results coincide with biologists'' analyses.

Conclusions

Our approach provides a powerful new tool for analyzing and annotating genomes and their phylogenetic relationships. Whole or partial genomes can be handled more easily and more quickly than using multiple alignment methods. Once a genome space has been constructed, it can be stored in a database. There is no need to reconstruct the genome space for subsequent applications, whereas in multiple alignment methods, realignment is needed to add new sequences. Furthermore, one can make a global comparison of all genomes simultaneously, which no other existing method can achieve.  相似文献   

19.
20.
dbSNP: the NCBI database of genetic variation   总被引:1,自引:0,他引:1  
In response to a need for a general catalog of genome variation to address the large-scale sampling designs required by association studies, gene mapping and evolutionary biology, the National Center for Biotechnology Information (NCBI) has established the dbSNP database [S.T.Sherry, M.Ward and K. Sirotkin (1999) Genome Res., 9, 677-679]. Submissions to dbSNP will be integrated with other sources of information at NCBI such as GenBank, PubMed, LocusLink and the Human Genome Project data. The complete contents of dbSNP are available to the public at website: http://www.ncbi.nlm.nih.gov/SNP. The complete contents of dbSNP can also be downloaded in multiple formats via anonymous FTP at ftp://ncbi.nlm.nih.gov/snp/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号