首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nicotinamide adenine dinucleotide (NAD) content of mesenchymal cells from the embryonic chick limb has been hypothesized to control the differentiation of these cells by modulation of ADP-ribosylations. To test this hypothesis, [35S]sulfate incorporation into proteoglycans was monitored as an estimate of the chondrogenic expression of cultured limb mesenchymal cells treated with nicotinamide and nicotinic acid to elevate cellular NAD levels or with nicotinamide and benzamide compounds to inhibit ADP-ribosylations. The results of this study indicated that serum component(s) modulate the interactions between these chemical agents and limb mesenchymal cells and, thus, complicate the interpretations of experiments performed in the presence of serum. With a chemically defined medium that promotes limb mesenchymal cell proliferation and differentiation in vitro, it was demonstrated that: (1) no clear correlation exists between cellular NAD content and the chondrogenic expression of cultured limb mesenchymal cells, (2) nicotinamide and benzamide compounds reduce cell proliferation and, at the higher doses tested, considerably reduce chondrogenesis in limb mesenchymal cell cultures, and (3) limb mesenchymal cells exhibit an enhanced susceptibility to benzamide compounds at a time very early in the culture period which temporally coincides with a transient increase in cellular ADP-ribosylation activity and initial chondrogenic differentiation. These results suggest that NAD does not control the differentiation of limb mesenchymal cells and that ADP-ribosylations are an integral, though not controlling, component of limb mesenchyme cytodifferentiation. A model is presented which proposes a role for ADP-ribosylations during the differentiation of limb mesenchymal cells.  相似文献   

2.
The α1 subunit (Cav1.2) of the L‐type calcium channel (LTCC), which is presently existing in both excitatory cells and non‐excitatory cells, is involved in the differentiation and proliferation of mesenchymal stem cells (MSCs). Dental pulp stem cells (DPSCs), MSCs derived from dental pulp, exhibit multipotent characteristics similar to those of MSCs. The aim of the present study was to examine the contribution of Cav1.2 and its distal C‐terminus (DCT) to the commitment of rat DPSCs (rDPSCs) toward chondrocytes and adipocytes in vitro. The expression of Cav1.2 was obviously elevated in chondrogenic differentiation but did not differ significantly in adipogenic differentiation. The chondrogenic differentiation but not adipogenic of rDPSCs was inhibited by either blocking LTCC using nimodipine or knockdown of Cav1.2 via short hairpin RNA (shRNA). Overexpression of DCT rescued the inhibition by Cav1.2‐shRNA during chondrogenic differentiation, indicating that DCT is essential for the chondrogenic differentiation of rDPSCs. However, the protein level of DCT decreased after chondrogenic differentiation in wild‐type cells, and overexpression of DCT in rDPSCs inhibited the phenotype. These data suggest that DCT is indispensable for chondrogenic differentiation of rDPSCs but that superfluous DCT inhibits this process. Through the analysis of differentially expressed genes using RNA‐seq data, we speculated that the regulation of DCT might be mediated by the mitogen‐activated protein kinase/extracellular‐regulated kinase and c‐Jun N‐terminal kinase signaling pathways, or Chondromodulin‐1.  相似文献   

3.
Cartilage tissue engineering is still a major clinical challenge with optimisation of a suitable source of cells for cartilage repair/regeneration not yet fully addressed. The aims of this study were to compare and contrast the differences in chondrogenic behaviour between human bone marrow stromal cells (HBMSCs), human neonatal and adult chondrocytes to further our understanding of chondroinduction relative to cell maturity and to identify factors that promote chondrogenesis and maintain functional homoeostasis. Cells were cultured in monolayer in either chondrogenic or basal medium, recapitulating procedures used in existing clinical procedures for cell-based therapies. Cell doubling time, morphology and alkaline phosphatase specific activity (ALPSA) were determined at different time points. Expression of chondrogenic markers (SOX9, ACAN and COL2A1) was compared via real time polymerase chain reaction. Amongst the three cell types studied, HBMSCs had the highest ALPSA in basal culture and lowest ALPSA in chondrogenic media. Neonatal chondrocytes were the most proliferative and adult chondrocytes had the lowest ALPSA in basal media. Gene expression analysis revealed a difference in the temporal expression of chondrogenic markers which were up regulated in chondrogenic medium compared to levels in basal medium. Of the three cell types studied, adult chondrocytes offer a more promising cell source for cartilage tissue engineering. This comparative study revealed differences between the microenvironment of all three cell types and provides useful information to inform cell-based therapies for cartilage regeneration.  相似文献   

4.
The aim of this study was to investigate the interconnection between the processes of proliferation, dedifferentiation, and intrinsic redifferentiation (chondrogenic) capacities of human articular chondrocyte (HAC), and to identify markers linking HAC dedifferentiation status with their chondrogenic potential. Cumulative population doublings (PD) of HAC expanded in monolayer culture were determined, and a threshold range of 3.57–4.19 PD was identified as indicative of HAC loss of intrinsic chondrogenic capacity in pellets incubated without added chondrogenic factors. While several specific gene and surface markers defined early HAC dedifferentiation process, no clear correlation with the loss of intrinsic chondrogenic potential could be established. CD90 expression during HAC monolayer culture revealed two subpopulations, with sorted CD90‐negative cells showing lower proliferative capacity and higher chondrogenic potential compared to CD90‐positive cells. Although these data further validated PD as critical for in vitro chondrogenesis, due to the early shift in expression, CD90 could not be considered for predicting chondrogenic potential of HAC expanded for several weeks. In contrast, an excellent mathematically modeled correlation was established between PD and the decline of HAC expressing the intracellular marker S100, providing a direct link between the number of cell divisions and dedifferentiation/loss of intrinsic chondrogenic capacity. Based on the dynamics of S100‐positive HAC during expansion, we propose asymmetric cell division as a potential mechanism of HAC dedifferentiation, and S100 as a marker to assess chondrogenicity of HAC during expansion, of potential value for cell‐based cartilage repair treatments. J. Cell. Physiol. 222: 411–420, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.

Glycosaminoglycans (GAGs) are major components of cartilage extracellular matrix (ECM), which play an important role in tissue homeostasis not only by providing mechanical load resistance, but also as signaling mediators of key cellular processes such as adhesion, migration, proliferation and differentiation. Specific GAG types as well as their disaccharide sulfation patterns can be predictive of the tissue maturation level but also of disease states such as osteoarthritis. In this work, we used a highly sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to perform a comparative study in terms of temporal changes in GAG and disaccharide composition between tissues generated from human bone marrow- and synovial-derived mesenchymal stem/stromal cells (hBMSC/hSMSC) after chondrogenic differentiation under normoxic (21% O2) and hypoxic (5% O2) micromass cultures. The chondrogenic differentiation of hBMSC/hSMSC cultured under different oxygen tensions was assessed through aggregate size measurement, chondrogenic gene expression analysis and histological/immunofluorescence staining in comparison to human chondrocytes. For all the studied conditions, the compositional analysis demonstrated a notable increase in the average relative percentage of chondroitin sulfate (CS), the main GAG in cartilage composition, throughout MSC chondrogenic differentiation. Additionally, hypoxic culture conditions resulted in significantly different average GAG and CS disaccharide percentage compositions compared to the normoxic ones. However, such effect was considerably more evident for hBMSC-derived chondrogenic aggregates. In summary, the GAG profiles described here may provide new insights for the prediction of cartilage tissue differentiation/disease states and to characterize the quality of MSC-generated chondrocytes obtained under different oxygen tension culture conditions.

  相似文献   

6.
In cartilaginous tissues, perichondrium cambium layer may be the source of new cartilage. Human nasal septal perichondrium is considered to be a homogeneous structure in which some authors do not recognize the perichondrium internal zone or the cambium layer as a layer distinct from adjacent cartilage surface. In the present study, we isolated a chondrogenic cell population from human nasal septal cartilage surface zone. Nasoseptal chondrogenic cells were positive for surface markers described for mesenchymal stem cells, with exception of CD146, a perivascular cell marker, which is consistent with their avascular niche in cartilage. Although only Sox-9 was constitutively expressed, they also revealed osteogenic and chondrogenic, but not adipogenic, potentials in vitro, suggesting a more restricted lineage potential compared to mesenchymal stem cells. Interestingly, even in absence of chondrogenic growth factors in the pellet culture system, nasoseptal chondrogenic cells had a capacity to synthesize sulfated glycosaminoglycans, large amounts of collagen type II and to a lesser extent collagen type I. The spontaneous chondrogenic potential of this population of cells indicates that they may be a possible source for cartilage tissue engineering. Besides, the pellet culture system using nasoseptal chondrogenic cells may also be a model for studies of chondrogenesis.  相似文献   

7.
Injuries to the articular cartilage and growth plate are significant clinical problems due to their limited ability to regenerate themselves. Despite progress in orthopedic surgery and some success in development of chondrocyte transplantation treatment and in early tissue-engineering work, cartilage regeneration using a biological approach still remains a great challenge. In the last 15 years, researchers have made significant advances and tremendous progress in exploring the potentials of mesenchymal stem cells (MSCs) in cartilage repair. These include (a) identifying readily available sources of and devising appropriate techniques for isolation and culture expansion of MSCs that have good chondrogenic differentiation capability, (b) discovering appropriate growth factors (such as TGF-beta, IGF-I, BMPs, and FGF-2) that promote MSC chondrogenic differentiation, (c) identifying or engineering biological or artificial matrix scaffolds as carriers for MSCs and growth factors for their transplantation and defect filling. In addition, representing another new perspective for cartilage repair is the successful demonstration of gene therapy with chondrogenic growth factors or inflammatory inhibitors (either individually or in combination), either directly to the cartilage tissue or mediated through transducing and transplanting cultured chondrocytes, MSCs or other mesenchymal cells. However, despite these rapid pre-clinical advances and some success in engineering cartilage-like tissue and in repairing articular and growth plate cartilage, challenges of their clinical translation remain. To achieve clinical effectiveness, safety, and practicality of using MSCs for cartilage repair, one critical investigation will be to examine the optimal combination of MSC sources, growth factor cocktails, and supporting carrier matrixes. As more insights are acquired into the critical factors regulating MSC migration, proliferation and chondrogenic differentiation both ex vivo and in vivo, it will be possible clinically to orchestrate desirable repair of injured articular and growth plate cartilage, either by transplanting ex vivo expanded MSCs or MSCs with genetic modifications, or by mobilising endogenous MSCs from adjacent source tissues such as synovium, bone marrow, or trabecular bone.  相似文献   

8.
A double-network (DN) gel, which was composed of poly(2-acrylamido-2-methylpropanesulfonic acid) and poly(N,N′-dimethyl acrylamide) (PAMPS/PDMAAm), has the potential to induce chondrogenesis both in vitro and in vivo. The present study investigated the biomechanical and biological responses of chondrogenic progenitor ATDC5 cells cultured on the DN gel. ATDC5 cells were cultured on a polystyrene surface without insulin (Culture 1) and with insulin (Culture 2), and on the DN gel without insulin (Culture 3). The cultured cells were evaluated using micropipette aspiration for cell Young?s modulus and qPCR for gene expression of chondrogenic and actin organization markers on days 3, 7 and 14. On day 3, the cells in Culture 3 formed nodules, in which the cells exhibited an actin cortical layer inside them, and gene expression of type-II collagen, aggrecan, and SOX9 was significantly higher in Culture 3 than Cultures 1 and 2 (p<0.05). Young?s modulus in Culture 3 was significantly higher than that in Culture 1 throughout the testing period (p<0.05) and that in Culture 2 on day 14 (p<0.01). There was continuous expression of actin organization markers in Culture 3. This study highlights that the cells on the DN gel increased the modulus and mRNA expression of chondrogenic markers at an earlier time point with a greater magnitude compared to those on the polystyrene surface with insulin. This study also demonstrates a possible strong interrelation among alteration of cell mechanical properties, changes in actin organization and the induction of chondrogenic differentiation.  相似文献   

9.
Human mesenchymal stem cells (hMSCs) are able to self-replicate and differentiate into a variety of cell types including osteoblasts, chondrocytes, adipocytes, endothelial cells, and muscle cells. It was reported that fibroblast growth factor-2 (FGF-2) increased the growth rate and multidifferentiation potentials of hMSCs. In this study, we investigated the genes involved in the promotion of osteogenic and chondrogenic differentiation potentials of hMSCs in the presence of FGF-2. hMSCs were maintained in the medium with FGF-2. hMSCs were harvested for the study of osteogenic or chondrogenic differentiation potential after 15 days’ culture. To investigate osteogenic differentiation, the protein levels of alkaline phosphatase (ALP) and the mRNA expression levels of osteocalcin were measured after the induction of osteogenic differentiation. Moreover, the investigation for chondrogenic differentiation was performed by measuring the mRNA expression levels of type II and type X collagens after the induction of chondrogenic differentiation. The expression levels of ALP, type II collagen, and type X collagen of hMSCs cultured with FGF-2 were significantly higher than control. These results suggested that FGF-2 increased osteogenic and chondrogenic differentiation potentials of hMSCs. Furthermore, microarray analysis was performed after 15 days’ culture in the medium with FGF-2. We found that the overall insulin-like growth factor-I (IGF-I) and transforming growth factor-β (TGF-β) signaling pathways were inactivated by FGF-2. These results suggested that the inactivation of IGF-I and TGF-β signaling promotes osteogenic and chondrogenic differentiation potential of hMSCs in the presence of FGF-2.  相似文献   

10.
Periosteum-derived progenitor cells (PDPCs) were isolated using a fluorescence-activated cell sorter and their chondrogenic potential in biomaterials was investigated for the treatment of defective articular cartilage as a cell therapy. The chondrogenesis of PDPCs was conducted in a thermoreversible gelation polymer (TGP), which is a block copolymer composed of temperature-responsive polymer blocks such as poly(N-isopropylacrylamide) and of hydrophilic polymer blocks such as polyethylene oxide, and a defined medium that contained transforming growth factor-β3 (TGF-β3). The PDPCs exhibited chondrogenic potential when cultured in TGP. As the PDPCs-TGP is an acceptable biocompatible complex appropriate for injection into humans, this product might be readily applied to minimize invasion in a defected knee.  相似文献   

11.
Exposure of the chick embryo to the nicotinamide analog, 6-aminonicotinamide (6-AN), causes specific changes in chondrogenic cells that result in limb deformity. Autoradiography has further delineated these changes and relates them to altered utilization of molecular precursors of cartilage matrix and DNA. With 35SO4 to monitor synthesis of glycosaminoglycan, it was shown that, at 6 hr and persisting until 24 hr after treatment, 6-AN inhibited utilization of sulfate by cells in the chondrogenic core while having no detectable effect on cells in the chondrogenic periphery. Similarly, 6-AN suppressed incorporation of [3H]thymidine into core cells while having no effect to a slight enhancement effect on chondrogenic and nonchondrogenic cells surrounding the core. These observations support the view that, in response to 6-AN-inhibited NAD(P)-dependent reactions, limb chondrogenic cells (CORE) cease to produce matrix glycosaminoglycan, cease to synthesize DNA, and ultimately succumb. Conversely, presumably as a result of more efficient energy production because they lie closer to a vascular supply of oxygen, cells in the chondrogenic periphery withstand the teratogenic insult and continue proliferating to become the source where subsequent partial repair of the limb occurs.  相似文献   

12.
13.
14.
We examined the roles of Notch signaling and fibroblast growth factors (FGFs) in the gliogenesis of mouse mesencephalic neural crest cells. The present study demonstrated that Notch activation or FGF treatment promotes the differentiation of glia expressing glial fibrillary acidic protein. Notch activation or FGF2 exposure during the first 48 h in culture was critical for glial differentiation. The promotion of gliogenesis by FGF2 was significantly suppressed by the inhibition of Notch signaling using Notch-1 siRNA. These data suggest that FGFs activate Notch signaling and that this activation promotes the gliogenic specification of mouse mesencephalic neural crest cells. Notch activation and FGF treatment have been shown to participate in the chondrogenic specification of these cells [Nakanishi, K., Chan, Y.S., Ito, K., 2007. Notch signaling is required for the chondrogenic specification of mouse mesencephalic neural crest cells. Mech. Dev. 124, 190–203]. Therefore, we analyzed whether or not there were differences between gliogenic and chondrogenic specifications in the downstream pathway of the Notch receptor. Whereas the activation of only the Deltex-mediated pathway was sufficient to promote glial specification, the activation of both RBP-J- and Deltex-dependent pathways was required for chondrogenic specification. These results suggest that the different downstream pathways of the Notch receptor participate in the gliogenic and chondrogenic specification of mouse mesencephalic neural crest cells.  相似文献   

15.
Background and objectives: Adipose tissue‐derived stem cells (ASCs) have great potential for regenerative medicine. For molecular understanding of specific functional molecules present in ASCs, we analysed 756 proteins including specific chondrogenic functional factors, using high‐throughput nano reverse‐phase liquid chromatography–electrospray ionization–tandem mass spectrometry. Materials, methods and results: Of these proteins, 33 were identified as chondrogenic factors or proteins including type 2 collagen, biglycan, insulin‐like growth factor‐binding protein and transforming growth factor‐beta 1 (TGF‐β1). ASCs are a possible cell source for cartilage regeneration as they are able to secrete a number of functional cytokines including chondrogenesis‐inducing molecules such as TGF‐β1 and bone morphogenetic protein 4 (BMP4). The chondrogenic phenotype of cultured ASCs was effectively induced by ASC‐culture media (CM) containing BMP4 and TGF‐β1, and maintained after pre‐treatment for 14 days in vitro and subcutaneous implantation in vivo. Chondrogenic differentiation efficiency of cultured ASCs and cultured mouse skin‐derived progenitor cells (SPCs) depended absolutely on ASC CM‐fold concentration. Cell density was also a very important factor for chondrogenic behaviour development during differentiation of ASCs and SPCs. Conclusion: ASC CM‐derived TGF‐β1‐induced chondrogenic differentiation of ASCs resulted in significant reduction in chondrogenic activity after inhibition of the p38 pathway, revealing involvement of this MAPK pathway in TGF‐β1 signalling. On the other hand, TGF‐β1 signalling also led to SMAD activation that could directly increase chondrogenic activity of ASCs.  相似文献   

16.
17.
18.
We have developed an improved method for preparing cell aggregates for in vitro chondrogenesis studies. This method is a modification of a previously developed conical tube-based culture system that replaces the original 15-mL polypropylene tubes with 96-well plates. These modifications allow a high-throughput approach to chondrogenic cultures, which reduces both the cost and time to produce chondrogenic aggregates, with no detrimental effects on the histological and histochemical qualities of the aggregates. We prepared aggregates in both systems with human bone marrow-derived mesenchymal stem cells (hMSC). The aggregates were harvested after 2 and 3 weeks in chondrogenic culture and analyzed for their ability to differentiate along the chondrogenic pathway in a defined in vitro environment. Chondrogenic differentiation was assessed biochemically by DNA and glycosaminoglycan (GAG) quantification assays and by histological and immunohistologic assessment. The chondrogenic cultures produced in the 96-well plates appear to be slightly larger in size and contain more DNA and GAG than the aggregates made in tubes. When analyzed histologically, both systems demonstrate morphological characteristics that are consistent with chondrogenic differentiation and cartilaginous extracellular matrix production.  相似文献   

19.
Telomere length plays an important role in regulating the proliferative capacity of cells, and serves as a marker for cell cycle history and also for their remaining replicative potential. Mesenchymal stromal cells (MSC) are known to be a significant cell source for therapeutic intervention and tissue engineering. To investigate any possible limitations in the replicative potential and chondrogenic differentiation potential of fibroblast growth factor-2-expanded MSCs (FGF(+)MSC), these cells were differentiated at various population doublings (PDs), and telomere length and telomerase activity were measured before and after differentiation. FGF(+)MSC cultured at a relatively low density maintained proliferation capability past more than 80 PD and maintained chondrogenic differentiation potential up to at least 46 PD and long telomeres up to 105 PD, despite expressing low levels of telomerase activity. Interestingly, upon chondrogenic differentiation of these cells, telomeres showed a remarkable reduction in length. This shortening was more extensive when FGF(+)MSC of higher PD levels were differentiated. These findings suggest that telomere length may be a useful genetic marker for chondrogenic progenitor cells.  相似文献   

20.
When limb bud mesodermal cells of stages 23–24 chick embryos were plated at low cell density (2 × 105 cells/cm2) and cultured in medium containing 10% fetal calf serum (FCS) (serum-rich medium), all cells became fibroblastic and no chondrocyte differentiation occurred in the culture. However, when cells of the same origin were cultured in a medium containing only 0.1% FCS (serum-poor medium), almost all the cells formed aggregates which developed further to form cartilage nodules. The loss of chondrogenic activity in serum-rich medium culture was irreversible: cultivation of the limb bud cells in serum-rich medium for 12 h abolished chondrogenic activity completely and these cells could not resume activity on re-cultivation in serum-poor medium. Calf, horse and chick serum at a concentration of 10% also induced the loss of chondrogenic activity in low cell density culture. Failure of chondrogenesis in serum-rich medium culture seemed to be due to the commitment of bipotential limb bud mesodermal cells to fibroblastic cells rather than to selective detachment of pre-committed chondroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号