首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The aim of the present study was the molecular profiling of different Ph+ chronic myelogenous leukemia (CML) cell lines (LAMA84, K562, and KCL22) by a proteomic approach. By employing two-dimensional gel electrophoresis combined with mass spectrometry analysis, we have identified 191 protein spots corresponding to 142 different proteins. Among these, 63% were cancer-related proteins and 74% were described for the first time in leukemia cells. Multivariate analysis highlighted significant differences in the global proteomic profile of the three CML cell lines. In particular, the detailed analysis of 35 differentially expressed proteins revealed that LAMA84 cells preferentially expressed proteins associated with an invasive behavior, while K562 and KCL22 cells preferentially expressed proteins involved in drug resistance. These data demonstrate that these CML cell lines, although representing the same pathological phenotype, show characteristics in their protein expression profile that suggest different phenotypic leukemia subclasses. These data contribute a new potential characterization of the CML phenotype and may help to understand interpatient variability in the progression of disease and in the efficacy of a treatment.  相似文献   

3.
Molecular and functional profiling of memory CD8 T cell differentiation   总被引:40,自引:0,他引:40  
Kaech SM  Hemby S  Kersh E  Ahmed R 《Cell》2002,111(6):837-851
How and when memory T cells form during an immune response are long-standing questions. To better understand memory CD8 T cell development, a time course of gene expression and functional changes in antigen-specific T cells during viral infection was evaluated. The expression of many genes continued to change after viral clearance in accordance with changes in CD8 T cell functional properties. Even though memory cell precursors were present at the peak of the immune response, these cells did not display hallmark functional traits of memory T cells. However, these cells gradually acquired the memory cell qualities of self-renewal and rapid recall to antigen suggesting the model that antigen-specific CD8 T cells progressively differentiate into memory cells following viral infection.  相似文献   

4.
Lysophosphatidic acid (LPA) is a small lysophospholipid that signals through G-protein coupled receptors (GPCRs) to mediate diverse cellular responses. Two LPA receptors, LPA(1) and LPA(2), show gene expression profiles in mouse embryonic cerebral cortex, suggesting roles for LPA signaling in cerebral cortical development. Here, we review loss-of-function and gain-of-function models that have been used to examine LPA signaling. Genetic deletion of lpa(1) or both lpa(1) and lpa(2) in mice results in 50-65% neonatal lethality, but not obvious cortical phenotypes in survivors, suggesting that compensatory signaling systems exist for regulating cortical development. A gain-of-function model, approached by increasing receptor activation through exogenous delivery of LPA, shows that LPA signaling regulates cerebral cortical growth and anatomy by affecting proliferation, differentiation and cell survival during embryonic development.  相似文献   

5.
6.
An increasing number of sphingolipids, glycosphingolipids and some of their degradation products have been recognized in recent years as second messengers involved in signal transduction and as modulators of numerous cellular functions. These can be converted into inert, caged compounds, introduced into cells and tissues and subsequently photolysed to active compounds thus enabling the study of fast biological processes. The novel, potentially caged compounds synthesized here are substituted 2-nitrobenzyl urethans and 2-nitrobenzyl amines derived from sphingosine, dihydrosphingosine, N-methylsphingosine, N-methyldihydrosphingosine, psychosine and glucosylsphingosine. Upon irradiation of the afore mentioned compounds they release, or are expected to release, the free biologically active amines.  相似文献   

7.
Cell line models have been widely used to investigate glioblastoma multiforme (GBM) pathobiology and in the development of targeted therapies. However, GBM tumours are molecularly heterogeneous and how cell lines can best model that diversity is unknown. In this report, we investigated gene expression profiles of three preclinical growth models of glioma cell lines, in vitro and in vivo as subcutaneous and intracerebral xenografts to examine which cell line model most resembles the clinical samples. Whole genome DNA microarrays were used to profile gene expression in a collection of 25 high-grade glioblastomas, and comparisons were made to profiles of cell lines under three different growth models. Hierarchical clustering revealed three molecular subtypes of the glioblastoma patient samples. Supervised learning algorithm, trained on glioma subtypes predicted the intracerebral cell line model with one glioma subtype (r = 0.68; 95% bootstrap CI -0.41, 0.46). Survival analysis of enriched gene sets (P < 0.05) revealed 19 biological categories (146 genes) belonging to neuronal, signal transduction, apoptosis- and glutamate-mediated neurotransmitter activation signals that are associated with poor prognosis in this glioma subclass. We validated the expression profiles of these gene categories in an independent cohort of patients from 'The Cancer Genome Atlas' project (r = 0.62, 95% bootstrap CI: -0.42, 0.43). We then used these data to select and inhibit a novel target (glutamate receptor) and showed that LY341595, a glutamate receptor specific antagonist, could prolong survival in intracerebral tumour-implanted mice in combination with irradiation, providing an in vivo cell line system of preclinical studies.  相似文献   

8.
Perturbations of the extracellular ionic content by different hypo- or hyperosmolar stimuli initiate stress responses to maintain cell viability that include activation of Mitogen Activated Protein Kinases (MAPK) in cell lines derived from kidney epithelium. When hyperosmolar conditions induced by different salts occurred in the extracellular environment of tumor-derived cell lines, they activated the Extracellular Regulated Kinase 1/2 by increasing its phosphorylation steady-state on Thr202/Tyr204 in a time- and dose-dependent manner. It was found that Extracellular Regulated Kinase 1/2 activation is a consequence of selective phosphorylation by mitogen-activated protein kinase/ERK kinase. Changes in cell shape or in tubulin or actin cytoskeletal structure were not found, although cell growth arrest was observed as well as induction of apoptosis and modified cell migration ability that were dependent upon Extracellular Regulated Kinase 1/2 activation evidencing a critical role for the Extracellular Regulated Kinase 1/2 in mediating survival of cells in hyperosmotic conditions.  相似文献   

9.
视觉信号在中枢的整合:同步振荡产生的机理和功能   总被引:2,自引:0,他引:2  
Xie XH  Lu HD  Wang L  Diao YC 《生理科学进展》1997,28(2):108-112
神经系统内各信息通道的信号间如何整合?一个可能的途径就是通过同步振荡来协调。本文对同怕研究进展作了回顾,侧重介绍了视皮怪内同步振荡的提出、实验依据、产生的机理和功能意义,并对可能的进展作了展望。  相似文献   

10.
11.
12.
13.
14.
Mutations in polycystin-1 (PC1) and polycystin-2 (PC2) result in a commonly occurring genetic disorder, called Autosomal Dominant Polycystic Kidney Disease (ADPKD), that is characterized by the formation and development of kidney cysts. Epithelial cells with loss-of-function of PC1 or PC2 show higher rates of proliferation and apoptosis and reduced autophagy. PC1 is a large multifunctional transmembrane protein that serves as a sensor that is usually found in complex with PC2, a calcium (Ca2+)-permeable cation channel. In addition to decreased Ca2+ signaling, several other cell fate-related pathways are de-regulated in ADPKD, including cAMP, MAPK, Wnt, JAK-STAT, Hippo, Src, and mTOR. In this review we discuss how polycystins regulate cell death and survival, highlighting the complexity of molecular cascades that are involved in ADPKD.  相似文献   

15.
Antibody microarrays are a developing tool for global proteomic profiling. A protocol was established that permits robust analyses of protein extracts from mammalian tissues and cells rather than body fluids. The factors optimized were buffer composition for surface blocking, blocking duration, protein handling and processing, labeling parameters like type of dye, molar ratio of label versus protein, and dye removal, as well as incubation parameters such as duration, temperature, buffer, and sample agitation.  相似文献   

16.
The membrane-bound atrial natriuretic peptide receptor (GCA) catalyzes the formation of cGMP from GTP in response to natriuretic peptide hormones. Previous structural studies have focused on the extra-cellular hormone binding domain of this receptor whereas its intra-cellular domain has not yet been amenable to such studies. We report here the baculovirus expression and purification of the GCA intra-cellular domain construct GCAID comprising the complete intra-cellular region which includes the kinase-homology domain, coiled-coil region, and catalytic cyclase domain. The intra-cellular domain was enzymatically characterized in terms of guanylyl cyclase activity and the effects of ATP, manganese, and Triton X-100. Our results indicate that the activity of the intra-cellular domain of the ANP receptor is about 2 fold less active compared to a truncated cyclase domain construct lacking the kinase-like domain that was also expressed and purified. In addition, unlike the full length receptor, the intra-cellular domain could not be activated by Triton X-100/Mn2+ or its activity stimulated by ATP. These data therefore indicate that the major part of the transition from the basal state to the fully, ANP/ATP-dependent, activated state as well its stimulation/enhancement by Triton X-100/Mn2+ requires the full length receptor. These receptor insights could aid in the development of novel therapeutics as the GCA receptor is a key drug target for cardiovascular diseases.  相似文献   

17.
As the most diverse type of cell surface receptor, the importance heptahelical G protein-coupled receptors (GPCRs) to clinical medicine cannot be overestimated. Visual, olfactory and gustatory sensation, intermediary metabolism, cell growth and differentiation are all influenced by GPCR signals. The basic receptor-G protein-effector mechanism of GPCR signaling is tuned by a complex interplay of positive and negative regulatory events that amplify the effect of a hormone binding the receptor or that dampen cellular responsiveness. The association of heptahelical receptors with a variety of intracellular partners other than G proteins has led to the discovery of potential mechanisms of GPCR signaling that extend beyond the classical paradigms. While the physiologic relevance of many of these novel mechanisms of GPCR signaling remains to be established, their existence suggests that the mechanisms of GPCR signaling are even more diverse than previously imagined.  相似文献   

18.
An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, by applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression.  相似文献   

19.
Renal epithelial cells release ATP constitutively under basal conditions and release higher quantities of purine nucleotide in response to stimuli. ATP filtered at the glomerulus, secreted by epithelial cells along the nephron, and released serosally by macula densa cells for feedback signaling to afferent arterioles within the glomerulus has important physiological signaling roles within kidneys. In autosomal recessive polycystic kidney disease (ARPKD) mice and humans, collecting duct epithelial cells lack an apical central cilium or express dysfunctional proteins within that monocilium. Collecting duct principal cells derived from an Oak Ridge polycystic kidney (orpk ( Tg737 ) ) mouse model of ARPKD lack a well-formed apical central cilium, thought to be a sensory organelle. We compared these cells grown as polarized cell monolayers on permeable supports to the same cells where the apical monocilium was genetically rescued with the wild-type Tg737 gene that encodes Polaris, a protein essential to cilia formation. Constitutive ATP release under basal conditions was low and not different in mutant versus rescued monolayers. However, genetically rescued principal cell monolayers released ATP three- to fivefold more robustly in response to ionomycin. Principal cell monolayers with fully formed apical monocilia responded three- to fivefold greater to hypotonicity than mutant monolayers lacking monocilia. In support of the idea that monocilia are sensory organelles, intentionally harsh pipetting of medium directly onto the center of the monolayer induced ATP release in genetically rescued monolayers that possessed apical monocilia. Mechanical stimulation was much less effective, however, on mutant orpk collecting duct principal cell monolayers that lacked apical central monocilia. Our data also show that an increase in cytosolic free Ca(2+) primes the ATP pool that is released in response to mechanical stimuli. It also appears that hypotonic cell swelling and mechanical pipetting stimuli trigger release of a common ATP pool. Cilium-competent monolayers responded to flow with an increase in cell Ca(2+) derived from both extracellular and intracellular stores. This flow-induced Ca(2+) signal was less robust in cilium-deficient monolayers. Flow-induced Ca(2+) signals in both preparations were attenuated by extracellular gadolinium and by extracellular apyrase, an ATPase/ADPase. Taken together, these data suggest that apical monocilia are sensory organelles and that their presence in the apical membrane facilitates the formation of a mature ATP secretion apparatus responsive to chemical, osmotic, and mechanical stimuli. The cilium and autocrine ATP signaling appear to work in concert to control cell Ca(2+). Loss of a cilium-dedicated autocrine purinergic signaling system may be a critical underlying etiology for ARPKD and may lead to disinhibition and/or upregulation of multiple sodium (Na(+)) absorptive mechanisms and a resultant severe hypertensive phenotype in ARPKD and, possibly, other diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号