首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In most eusocial insects, the division of labor results in relatively few individuals foraging for the entire colony. Thus, the survival of the colony depends on its efficiency in meeting the nutritional needs of all its members. Here, we characterize the network topology of a eusocial insect to understand the role and centrality of each caste in this network during the process of food dissemination. We constructed trophallaxis networks from 34 food-exchange experiments in black garden ants (Lasius niger). We tested the influence of brood and colony size on (i) global indices at the network level (i.e., efficiency, resilience, centralization, and modularity) and (ii) individual values (i.e., degree, strength, betweenness, and the clustering coefficient). Network resilience, the ratio between global efficiency and centralization, was stable with colony size but increased in the presence of broods, presumably in response to the nutritional needs of larvae. Individual metrics highlighted the major role of foragers in food dissemination. In addition, a hierarchical clustering analysis suggested that some domestics acted as intermediaries between foragers and other domestics. Networks appeared to be hierarchical rather than random or centralized exclusively around foragers. Finally, our results suggested that networks emerging from social insect interactions can improve group performance and thus colony fitness.  相似文献   

4.
Numerous factors affect the fine-scale social structure of animal groups, but it is unclear how important such factors are in determining how individuals encounter resources. Familiarity affects shoal choice and structure in many social fishes. Here, we show that familiarity between shoal members of sticklebacks (Gasterosteus aculeatus) affects both fine-scale social organization and the discovery of resources. Social network analysis revealed that sticklebacks remained closer to familiar than to unfamiliar individuals within the same shoal. Network-based diffusion analysis revealed that there was a strong untransmitted social effect on patch discovery, with individuals tending to discover a task sooner if a familiar individual from their group had previously done so than if an unfamiliar fish had done so. However, in contrast to the effect of familiarity, the frequency with which individuals had previously associated with one another had no effect upon the likelihood of prey patch discovery. This may have been due to the influence of fish on one another''s movements; the effect of familiarity on discovery of an empty ‘control’ patch was as strong as for discovery of an actual prey patch. Our results demonstrate that factors affecting fine-scale social interactions can also influence how individuals encounter and exploit resources.  相似文献   

5.
Organisms express phenotypic plasticity during social interactions. Interacting phenotype theory has explored the consequences of social plasticity for evolution, but it is unclear how this theory applies to complex social structures. We adapt interacting phenotype models to general social structures to explore how the number of social connections between individuals and preference for phenotypically similar social partners affect phenotypic variation and evolution. We derive an analytical model that ignores phenotypic feedback and use simulations to test the predictions of this model. We find that adapting previous models to more general social structures does not alter their general conclusions but generates insights into the effect of social plasticity and social structure on the maintenance of phenotypic variation and evolution. Contribution of indirect genetic effects to phenotypic variance is highest when interactions occur at intermediate densities and decrease at higher densities, when individuals approach interacting with all group members, homogenizing the social environment across individuals. However, evolutionary response to selection tends to increase at greater network densities as the effects of an individual's genes are amplified through increasing effects on other group members. Preferential associations among similar individuals (homophily) increase both phenotypic variance within groups and evolutionary response to selection. Our results represent a first step in relating social network structure to the expression of social plasticity and evolutionary responses to selection.  相似文献   

6.
Sociality is primarily a coordination problem. However, the social (or communication) complexity hypothesis suggests that the kinds of information that can be acquired and processed may limit the size and/or complexity of social groups that a species can maintain. We use an agent-based model to test the hypothesis that the complexity of information processed influences the computational demands involved. We show that successive increases in the kinds of information processed allow organisms to break through the glass ceilings that otherwise limit the size of social groups: larger groups can only be achieved at the cost of more sophisticated kinds of information processing that are disadvantageous when optimal group size is small. These results simultaneously support both the social brain and the social complexity hypotheses.  相似文献   

7.
The emerging field of network science has demonstrated that an individual's connectedness within their social network has cascading effects to other dimensions of life. Like humans, spider monkeys live in societies with high fission–fusion dynamics, and are remarkably social. Social network analysis (SNA) is a powerful tool for quantifying connections that may vary as a function of initiating or receiving social behaviors, which has been described as shifting social roles. In primatology, the SNA literature is dominated by work in catarrhines, and has yet to be applied to the study of development in a platyrrhine model. Here, SNA was utilized in combination with R-Index social role calculation to characterize social interaction patterns in juvenile and adult Colombian spider monkeys (Ateles fusciceps rufiventris). Connections were examined across five behaviors: embrace, face-embrace, grooming, agonism, and tail-wrapping from 186 hr of observation and four network metrics. Mann–Whitney U tests were utilized to determine differences between adult and juvenile social network patterns for each behavior. Face-embrace emerged as the behavior with different network patterns for adults and juveniles for every network metric. With regard to social role, juveniles were receivers, not initiators, for embrace, face-embrace, and grooming (ps < .05). Network and social role differences are discussed in light of social development and aspects of the different behaviors.  相似文献   

8.
9.
Social structure influences ecological processes such as dispersal and invasion, and affects survival and reproductive success. Recent studies have used static snapshots of social networks, thus neglecting their temporal dynamics, and focused primarily on a limited number of variables that might be affecting social structure. Here, instead we modelled effects of multiple predictors of social network dynamics in the spotted hyena, using observational data collected during 20 years of continuous field research in Kenya. We tested the hypothesis that the current state of the social network affects its long‐term dynamics. We employed stochastic agent‐based models that allowed us to estimate the contribution of multiple factors to network changes. After controlling for environmental and individual effects, we found that network density and individual centrality affected network dynamics, but that social bond transitivity consistently had the strongest effects. Our results emphasise the significance of structural properties of networks in shaping social dynamics.  相似文献   

10.
11.
The ‘social microbiome’ can fundamentally shape the costs and benefits of group-living, but understanding social transmission of microbes in free-living animals is challenging due to confounding effects of kinship and shared environments (e.g. highly associated individuals often share the same spaces, food and water). Here, we report evidence for convergence towards a social microbiome among introduced common vampire bats, Desmodus rotundus, a highly social species in which adults feed only on blood, and engage in both mouth-to-body allogrooming and mouth-to-mouth regurgitated food sharing. Shotgun sequencing of samples from six zoos in the USA, 15 wild-caught bats from a colony in Belize and 31 bats from three colonies in Panama showed that faecal microbiomes were more similar within colonies than between colonies. To assess microbial transmission, we created an experimentally merged group of the Panama bats from the three distant sites by housing these bats together for four months. In this merged colony, we found evidence that dyadic gut microbiome similarity increased with both clustering and oral contact, leading to microbiome convergence among introduced bats. Our findings demonstrate that social interactions shape microbiome similarity even when controlling for past social history, kinship, environment and diet.  相似文献   

12.
To avoid polarization and maintain small-worldness in society, people who act as attitudinal brokers are critical. These people maintain social ties with people who have dissimilar and even incompatible attitudes. Based on resting-state functional magnetic resonance imaging (n = 139) and the complete social networks from two Korean villages (n = 1508), we investigated the individual-level neural capacity and social-level structural opportunity for attitudinal brokerage regarding gender role attitudes. First, using a connectome-based predictive model, we successfully identified the brain functional connectivity that predicts attitudinal diversity of respondents'' social network members. Brain regions that contributed most to the prediction included mentalizing regions known to be recruited in reading and understanding others’ belief states. This result was corroborated by leave-one-out cross-validation, fivefold cross-validation and external validation where the brain connectivity identified in one village was used to predict the attitudinal diversity in another independent village. Second, the association between functional connectivity and attitudinal diversity of social network members was contingent on a specific position in a social network, namely, the structural brokerage position where people have ties with two people who are not otherwise connected.  相似文献   

13.
14.
Our current understanding of animal social networks is largely based on observations or experiments that do not directly manipulate associations between individuals. Consequently, evidence relating to the causal processes underlying such networks is limited. By imposing specified rules controlling individual access to feeding stations, we directly manipulated the foraging social network of a wild bird community, thus demonstrating how external factors can shape social structure. We show that experimentally imposed constraints were carried over into patterns of association at unrestricted, ephemeral food patches, as well as at nesting sites during breeding territory prospecting. Hence, different social contexts can be causally linked, and constraints at one level may have consequences that extend into other aspects of sociality. Finally, the imposed assortment was lost following the cessation of the experimental manipulation, indicating the potential for previously perturbed social networks of wild animals to recover from segregation driven by external constraints.  相似文献   

15.
Understanding why individuals carry out behaviours that benefit others, especially genetically unrelated others, has been a major undertaking in many fields and particularly in biology. Here, we focus on the cooperation literature from natural populations and present the benefits of a social network approach in terms of how it can help to identify and understand factors that influence the maintenance and spread of cooperation, but are not easily captured when solely considering independent dyadic interactions. We describe how various routes to cooperation can be tested within the social network framework. Applying the social network approach to data from natural populations can help to uncover the evolutionary and ecological pressures that lead to differences in cooperation and other social processes.  相似文献   

16.
17.
Social environments have an important effect on a range of ecological processes, and form a crucial component of selection. However, little is known of the link between personality, social behaviour and population structure. We combine a well‐understood personality trait with large‐scale social networks in wild songbirds, and show that personality underpins multiple aspects of social organisation. First, we demonstrate a relationship between network centrality and personality with ‘proactive’ (fast‐exploring) individuals associating weakly with greater numbers of conspecifics and moving between flocks. Second, temporal stability of associations relates to personality: ‘reactive’ (slow‐exploring) birds form synergistically stable relationships. Finally, we show that personality influences social structure, with males non‐randomly distributed across groups. These results provide strong evidence that songbirds follow alternative social strategies related to personality. This has implications not only for the causes of social network structure but also for the strength and direction of selection on personality in natural populations.  相似文献   

18.
19.
This study was designed to address whether juvenile small spotted catsharks Scyliorhinus canicula aggregate and to determine whether potential aggregation is underpinned by social preferences for conspecifics. Using controlled and replicated experiments, the role of familiarity as a potential mechanism driving aggregation and social behaviour in this species was considered. Observed S. canicula association data compared to null model simulations of random distributions revealed differences in aggregation under different social contexts. Only familiar juvenile S. canicula aggregated more than would be expected from random distribution across their habitat. Familiarity increased the mean number of groups but did not significantly affect mean group size. Significant preference and avoidance behaviour across all groups were also observed. Furthermore, the strength of social attraction, quantified by the mean association index, was significantly higher in groups containing familiar individuals. Mixed familiar and unfamiliar treatments were also conducted to test for within‐ and between‐group effects, finding high variation across replicates with some groups assorting by familiarity and others not. It is believed that this study is the first to examine experimentally the influence of conspecific familiarity on aggregation behaviour in sharks. These results not only imply a functional benefit to aggregation, but also suggest that persistent social affiliation is likely to influence dispersal following hatching in this small benthic elasmobranch.  相似文献   

20.
Animal‐focused research has been crucial for scientific advancement, but rodents are still taking a starring role. Starting as merely supporting evidence found in rodents, the use of fish models has slowly taken a more central role and expanded its overall contributions in areas such as social sciences, evolution, physiology and recently in translational medical research. In the neurosciences, zebrafish Danio rerio have been widely adopted, contributing to our understanding of the genetic control of brain processes and the effects of pharmacological manipulations. However, discussion continues regarding the paradox of function versus structure, when fishes and mammals are compared and on the potentially evolutionarily conserved nature of behaviour across fish species. From a behavioural standpoint, we explore aversive–stress and social behaviour in selected fish models and refer to the extensive contributions of stress and monoaminergic systems. We suggest that, in spite of marked neuroanatomical differences between fishes and mammals, stress and sociality are conserved at the behavioural and molecular levels. We also suggest that stress and sociality are mediated by monoamines in predictable and non‐trivial ways and that monoamines could bridge the relationship between stress and social behaviour. To reconcile the level of divergence with the level of similarity, we need neuroanatomical, pharmacological, behavioural and ecological studies conducted in the laboratory and in nature. These areas need to add to each other to enhance our understanding of fish behaviour and ultimately how this all may lead to better model systems for translational studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号