首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Recently, microRNAs have been detected in serum and plasma, and circulating microRNA (miRNA) profiles have now been associated with many diseases such as cancers and heart disease, as well as altered physiological states. Because of their stability and disease resistance, circulation miRNAs appear to be an ideal material for biomarkers of diseases and physiological states in blood. However, the lack of a suitable internal reference gene (internal reference miRNA) has hampered research and application of circulating miRNAs. Currently, U6 and miR-16 are the most common endogenous controls in the research of miRNAs in tissues and cells. We performed microarray-based serum miRNA profiling on the serum of 20 nasopharyngeal carcinoma patients and 20 controls to detect the expressions of U6 and miRNAs. Profiling was followed by real-time quantitative Polymerase Chain Reaction (qPCR) in 80 patients (20 each with gastric cancer, nasopharyngeal carcinoma, colorectal cancer, and breast cancer) and 30 non-cancerous controls. qPCR was also performed to detect miRNAs in serum with repeated freezing and thawing. The results of microarray showed that with the exception of U6, Ct values of miR-16, miR-24, miR-142-3p, miR-19b and miR-192 in serum samples of nasopharyngeal carcinoma were greater than control samples. The results of 110 cases showed large fluctuations in U6 expression. The difference between the greatest and the least levels of expression was 3.29 for delta Ct values, and 1.23 for miR-16. The expressions of U6, miR-16 and miR-24 in serum subjected to different freeze–thaw cycles showed that U6 expression gradually decreased after 1, 2, and 4 cycles of freezing and thawing, while the expression of miR-16 and miR-24 remained relatively stable. Collectively, our results suggested that U6 is unsuitable as an internal reference gene in the research of circulating miRNAs.  相似文献   

5.
Coronary artery disease (CAD) is the leading cause of human morbidity and mortality worldwide. Innovative diagnostic biomarkers are a pressing need for this disease. miRNAs profiling is an innovative method of identifying biomarkers for many diseases and could be proven as a powerful tool in the diagnosis and treatment of CAD. We performed miRNA microarray analysis from the plasma of three CAD patients and three healthy controls. Subsequently, we performed quantitative real-time PCR (qRT-PCR) analysis of miRNA expression in plasma of another 67 CAD patients and 67 healthy controls. We identified two miRNAs (miR-206 and miR-574-5p) that were significantly up-regulated in CAD patients as compared with healthy controls (P<0.05). The receiver operating characteristic (ROC) curves indicated these two miRNAs had great potential to provide sensitive and specific diagnostic value for CAD.  相似文献   

6.
Genome-wide platforms for high-throughput profiling of circulating miRNA (oligoarray or miR-Seq) offer enormous promise for agnostic discovery of circulating miRNA biomarkers as a pathway for development in breast cancer detection. By harmonizing data from 15 previous reports, we found widespread inconsistencies across prior studies. Whether this arises from differences in study design, such as sample source or profiling platform, is unclear. As a reproducibility experiment, we generated a genome-wide plasma miRNA dataset using the Illumina oligoarray and compared this to a publically available dataset generated using an identical sample size, substrate and profiling platform. Samples from 20 breast cancer patients, 20 mammography-screened controls, as well as 20 breast cancer patients after surgical resection and 10 female lung or colorectal cancer patients were included. After filtering for miRNAs derived from blood cells, and for low abundance miRNAs (non-detectable in over 10% of samples), a set of 522 plasma miRNAs remained, of which 46 were found to be differentially expressed between breast cancer patients and healthy controls (p<0.05), of which only 3 normalized to baseline levels in post-resection cases and were unique to breast cancer vs. lung or colorectal cancer (miR-708*, miR-92b* and miR-568, none previously reported). We were unable to demonstrate reproducibility by various measures between the two datasets. This finding, along with widespread inconsistencies across prior studies, highlight the need for better understanding of factors influencing circulating miRNA levels as prerequisites to progress in this area of translational research.  相似文献   

7.
Purpose: The potential health risks caused by power frequency electromagnetic field (PFEMF) have led to increase public health concerns. However, the diagnosis and prognosis remain challenging in determination of exact dose of PFEMF exposure.

Materials and methods: Mice were exposed to different magnetic doses of PFEMF for the following isolation of serum exosomes, microRNAs (miRNAs) extraction and small RNA sequencing. After small RNA sequencing, bioinformatic analysis, quantitative real-time PCR (qRT-PCR) validation and serum exosomal miRNA biomarkers were determined.

Results: Significantly changed serum exosomal miRNA as biomarkers of 0.1, 0.5, 2.5?mT and common PFEMF exposure were confirmed. Gene ontology (GO) and Kyoto encyclopaedia of genes and genomes (KEGG) pathway analysis of the downstream target genes of the above-identified exosomal miRNA markers indicated that, exosomal miRNA markers were predicted to be involved in critical pathophysiological processes of neural system and cancer- or other disease-related signalling pathways.

Conclusions: Aberrantly-expressed serum exosomal miRNAs, including miR-128-3p for 0.1?mT, miR-133a-3p for 0.5?mT, miR-142a-5p for 2.5?mT, miR-218-5p and miR-199a-3p for common PFEMF exposure, suggested a series of informative markers for not only identifying the exact dose of PFEMF exposure, also consolidating the base for future clinical intervention.  相似文献   

8.
9.
10.

Background

MicroRNAs (miRNAs) represent new and potentially informative diagnostic targets for disease detection and prognosis. However, little work exists documenting the effect of TRIzol, a common viral inactivation and nucleic acid extraction reagent, on miRNA purification. Here, we developed an optimized protocol for miRNA extraction from plasma samples by evaluating five different RNA extraction kits, TRIzol phase separation, purification additives, and initial plasma sample volume. This method was then used for downstream profiling of plasma miRNAs found in archived samples from one nonhuman primate (NHP) experimentally challenged with Ebola virus by the aerosol route.

Results

Comparison of real-time RT-PCR results for spiked-in and endogenous miRNA sequences determined extraction efficiencies from five different RNA purification kits. These experiments showed that 50 μL plasma processed using the QIAGEN miRNeasy Mini Kit with 5 μg of glycogen as a co-precipitant yielded the highest recovery of endogenous miRNAs. Using this optimized protocol, miRNAs from archived plasma samples of one rhesus macaque challenged with aerosolized Ebola virus was profiled using a targeted real-time PCR array. A total of 519 of the 752 unique miRNAs assayed were present in the plasma samples at day 0 and day 7 (time of death) post-exposure. Statistical analyses revealed 25 sequences significantly up- or down-regulated between day 0 and day 7 post infection, validating the utility of the extraction method for plasma miRNA profiling.

Conclusions

This study contributes to the knowledgebase of circulating miRNA extraction methods and expands on the potential applications of cell-free miRNA profiling for diagnostics and pathogenesis studies. Specifically, we optimized an extraction protocol for miRNAs from TRIzol-inactivated plasma samples that can be used for highly pathogenic viruses.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1299-5) contains supplementary material, which is available to authorized users.  相似文献   

11.
《Genomics》2021,113(3):1514-1521
To explore the role of plasma miRNAs in exosomes in early postmenopausal women. Small RNA sequencing was implemented to clarify the expression of miRNA in plasma exosomes obtained from 15 postmenopausal women, divided into groups of osteoporosis, osteopenia, and normal bone mass based on bone mineral density. Differentially expressed miRNAs (DEMs) were identified by comparing miRNA expression profiles. Five putative miRNAs, miR-224-3p, miR-25-5p, miR-302a-3p, miR-642a-3p, and miR-766-5p were confirmed by real-time PCR; miRNA target genes were obtained from 4 databases: miRWalk, miRDB, RNA22, and TargetScan. The miRNA-mRNA- Kyoto Encyclopedia of Genes and Genomes (KEGG) networks were analyzed, and the DEMs' potential role was investigated by gene ontology terms and KEGG pathway annotation. The results suggest that characterizing plasma exosomal miRNA profiles of early postmenopausal women by small RNA sequencing could identify novel exo-miRNAs involved in bone remodeling, and miR-642a-3p maybe contribute to the prediction and diagnosis of early postmenopausal osteoporosis.  相似文献   

12.
Filarial nematodes cause chronic and profoundly debilitating diseases in both humans and animals. Applications of novel technology are providing unprecedented opportunities to improve diagnosis and our understanding of the molecular basis for host-parasite interactions. As a first step, we investigated the presence of circulating miRNAs released by filarial nematodes into the host bloodstream. miRNA deep-sequencing combined with bioinformatics revealed over 200 mature miRNA sequences of potential nematode origin in Dirofilaria immitis-infected dog plasma in two independent analyses, and 21 in Onchocerca volvulus-infected human serum. Total RNA obtained from D. immitis-infected dog plasma was subjected to stem-loop RT-qPCR assays targeting two detected miRNA candidates, miR-71 and miR-34. Additionally, Brugia pahangi-infected dog samples were included in the analysis, as these miRNAs were previously detected in extracts prepared from this species. The presence of miR-71 and miR-34 discriminated infected samples (both species) from uninfected samples, in which no specific miRNA amplification occurred. However, absolute miRNA copy numbers were not significantly correlated with microfilaraemia for either parasite. This may be due to the imprecision of mf counts to estimate infection intensity or to miRNA contributions from the unknown number of adult worms present. Nonetheless, parasite-derived circulating miRNAs are found in plasma or serum even for those species that do not live in the bloodstream.  相似文献   

13.
Lung cancer is the major human malignancy, accounting for 30% of all cancer-related deaths worldwide. Poor survival of lung cancer patients, together with late diagnosis and resistance to classic chemotherapy, highlights the need for identification of new biomarkers for early detection. Among different cancer biomarkers, small non-coding RNAs called microRNAs (miRNAs) are considered the most promising, owing to their remarkable stability, their cancer-type specificity, and their presence in body fluids. However, results of multiple previous attempts to identify circulating miRNAs specific for lung cancer are inconsistent, likely due to two main reasons: prominent variability in blood miRNA content among individuals and difficulties in distinguishing tumor-relevant miRNAs in the blood from their non-tumor counterparts. To overcome these impediments, we compared circulating miRNA profiles in patients with lung squamous cell carcinoma (SCC) before and after tumor removal, assuming that the levels of all tumor-relevant miRNAs would drop after the surgery. Our results revealed a specific panel of the miRNAs (miR-205, -19a, -19b, -30b, and -20a) whose levels decreased strikingly in the blood of patients after lung SCC surgery. Interestingly, miRNA profiling of plasma fractions of lung SCC patients revealed high levels of these miRNA species in tumor-specific exosomes; additionally, some of these miRNAs were also found to be selectively secreted to the medium by cultivated lung cancer cells. These results strengthen the notion that tumor cells secrete miRNA-containing exosomes into circulation, and that miRNA profiling of the exosomal plasma fraction may reveal powerful cancer biomarkers.  相似文献   

14.
15.

Background

The dysregulated expressions of circulating miRNAs have been detected in various cardiovascular diseases. In our previous experiments, the altered expressions of circulating miRNA-21-5p, miRNA-361-5p and miRNA-519e-5p were confirmed in patients with coronary atherosclerosis by miRNA microarrays. However, the expression levels of these circulating miRNAs in the early phase of acute myocardial infarction (AMI) are still unknown. In the present study, our aims were to examine the expressions of circulating miR-21-5p, miR-361-5p and miR-519e-5p in AMI patients, and assess their clinical applications for diagnosing and monitoring AMI.

Results

Two different cohorts were enrolled in this study. The first cohort included 17 AMI patients and 28 healthy volunteers, and the second cohort included 9 AMI patients, 9 ischemic stroke patients, 8 patients with pulmonary embolism, and 12 healthy volunteers. Quantitative real-time PCR and ELISA assays were preformed to detect the concentrations of plasma miRNAs and cardiac troponin I (cTnI), respectively. The results showed that the plasma levels of miR-21-5p and miR-361-5p were significantly increased in AMI patients, whereas the concentration of circulating miR-519e-5p was reduced. Interestingly, the levels of these circulating miRNAs correlated with the concentrations of plasma cTnI. Receiver operating characteristic (ROC) analysis revealed that these three circulating miRNAs had considerable diagnostic accuracy for AMI with high values of area under ROC curve (AUC). Importantly, combining the three miRNAs significantly increased the diagnostic accuracy. Furthermore, cell experiments demonstrated that these plasma miRNAs may originate from injured cardiomyocytes induced by hypoxia. In addition, the levels of all the three circulating miRNAs in ischemic stroke (IS) and pulmonary embolism (PE) were elevated, whereas the decreased level of plasma miR-519e-5p was only detected in AMI. ROC analysis demonstrated that circulating miR-519e-5p may be a useful biomarker for distinguishing AMI from other ischemic diseases.

Conclusions

Circulating miRNAs may be novel and powerful biomarkers for AMI and they could be potential diagnostic tool for AMI.  相似文献   

16.
17.
MicroRNAs (miRNAs) are very short (18–24 nucleotides) nucleic acids that are expressed in a number of biological tissues and have been shown to be more resistant to extreme temperatures and pH compared to longer RNA molecules, like mRNAs. As miRNAs contribute to diverse biological process and respond to various kinds of cellular stress, their utility as diagnostic biomarkers and/or therapeutic targets has recently been explored. Here, we have evaluated the usefulness of miRNA quantification during postmortem examination of cardiac tissue from acute myocardial infarction (AMI) patients. Cardiac tissue was collected within one week of the patient’s death and either frozen (19 samples) or fixed in formalin for up to three years (36 samples). RNA integrity was evaluated with an electropherogram, and it appears that longer RNAs are fragmented after death in the long-term fixed samples. Quantitative PCR was also performed for seven miRNAs and three other small RNAs in order to determine the appropriate controls for our postmortem analysis. Our data indicate that miR-191 and miR-26b are more suitable than the other types of small RNA molecules as they are stably detected after death and long-term fixation. Further, we also applied our quantitation method, using these endogenous controls, to evaluate the expression of three previously identified miRNA biomarkers, miR-1, miR-208b, and miR-499a, in formalin-fixed tissues from AMI patients. Although miR-1 and miR-208b decreased (1.4-fold) and increased (1.2-fold), respectively, in the AMI samples compared to the controls, the significance of these changes was limited by our sample size. In contrast, the relative level of miR-499a was significantly decreased in the AMI samples (2.1-fold). This study highlights the stability of miRNAs after death and long-term fixation, validating their use as reliable biomarkers for AMI during postmortem examination.  相似文献   

18.
Mi QS  Weiland M  Qi RQ  Gao XH  Poisson LM  Zhou L 《PloS one》2012,7(2):e31278
MicroRNAs (miRNAs) are recently discovered small non-coding RNAs and can serve as serum biomarkers for disease diagnosis and prognoses. Lack of reliable serum miRNA endogenous references for normalization in miRNA gene expression makes single miRNA assays inaccurate. Using TaqMan® real-time PCR miRNA arrays with a global gene expression normalization strategy, we have analyzed serum miRNA expression profiles of 20 female mice of NOD/ShiLtJ (n = 8), NOR/LtJ (n = 6), and C57BL/6J (n = 6) at different ages and disease conditions. We identified five miRNAs, miR-146a, miR-16, miR-195, miR-30e and miR-744, to be stably expressed in all strains, which could serve as mouse serum miRNA endogenous references for single assay experiments.  相似文献   

19.
Biliary tract cancer (BTC) is often difficult to diagnose definitively, even through histological examination. MicroRNAs (miRNAs) regulate a variety of physiological processes. In recent years, it has been suggested that profiles for circulating miRNAs, as well as those for tissue miRNAs, have the potential to be used as diagnostic biomarkers for cancer. The aim of this study was to confirm the existence of miRNAs in human bile and to assess their potential as clinical biomarkers for BTC. We sampled bile from patients who underwent biliary drainage for biliary diseases such as BTC and choledocholithiasis. PCR-based miRNA detection and miRNA cloning were performed to identify bile miRNAs. Using high-throughput real-time PCR-based miRNA microarrays, the expression profiles of 667 miRNAs were compared in patients with malignant disease (n = 9) and age-matched patients with the benign disease choledocholithiasis (n = 9). We subsequently characterized bile miRNAs in terms of stability and localization. Through cloning and using PCR methods, we confirmed that miRNAs exist in bile. Differential analysis of bile miRNAs demonstrated that 10 of the 667 miRNAs were significantly more highly expressed in the malignant group than in the benign group at P<0.0005. Setting the specificity threshold to 100% showed that some miRNAs (miR-9, miR-302c*, miR-199a-3p and miR-222*) had a sensitivity level of 88.9%, and receiver-operating characteristic analysis demonstrated that miR-9 and miR-145* could be useful diagnostic markers for BTC. Moreover, we verified the long-term stability of miRNAs in bile, a characteristic that makes them suitable for diagnostic use in clinical settings. We also confirmed that bile miRNAs are localized to the malignant/benign biliary epithelia. These findings suggest that bile miRNAs could be informative biomarkers for hepatobiliary disease and that some miRNAs, particularly miR-9, may be helpful in the diagnosis and clinical management of BTC.  相似文献   

20.
In many cancers, including neuroblastoma, microRNA (miRNA) expression profiling of peripheral blood (PB) and bone marrow (BM) may increase understanding of the metastatic process and lead to the identification of clinically informative biomarkers. The quality of miRNAs in PB and BM samples archived in PAXgene? blood RNA tubes from large-scale clinical studies and the identity of reference miRNAs for standard reporting of data are to date unknown. In this study, we evaluated the reliability of expression profiling of 377 miRNAs using quantitative polymerase chain reaction (qPCR) in PB and BM samples (n = 90) stored at ?80 °C for up to 5 years in PAXgene? blood RNA tubes. There was no correlation with storage time and variation of expression for any single miRNA (r < 0.50). The profile of miRNAs isolated as small RNAs or co-isolated with small/large RNAs was highly correlated (r = 0.96). The mean expression of all miRNAs and the geNorm program identified miR-26a, miR-28-5p, and miR-24 as the most stable reference miRNAs. This study describes detailed methodologies for reliable miRNA isolation and profiling of PB and BM, including reference miRNAs for qPCR normalization, and demonstrates the suitability of clinical samples archived at ?80 °C into PAXgene? blood RNA tubes for miRNA expression studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号