首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 460 毫秒
1.
Rice (Oryza sativa) plants carrying the Pi-i resistance gene to blast fungus Magnaporthe oryzae restrict invaded fungus in infected tissue via hypersensitive reaction or response (HR), which is accompanied by rapid ethylene production and formation of small HR lesions. Ethylene biosynthesis has been implicated to be important for blast resistance; however, the individual roles of ethylene and cyanide, which are produced from the precursor 1-aminocyclopropane-1-carboxylic acid, remain unevaluated. In this study, we found that Pi-i-mediated resistance was compromised in transgenic rice lines, in which ethylene biosynthetic enzyme genes were silenced and then ethylene production was inhibited. The compromised resistance in transgenic lines was recovered by exogenously applying cyanide but not ethephon, an ethylene-releasing chemical in plant tissue. In a susceptible rice cultivar, treatment with cyanide or 1-aminocyclopropane-1-carboxylic acid induced the resistance to blast fungus in a dose-dependent manner, while ethephon did not have the effect. Cyanide inhibited the growth of blast fungus in vitro and in planta, and application of flavonoids, secondary metabolites that exist ubiquitously in the plant kingdom, enhanced the cyanide-induced inhibition of fungal growth. These results suggested that cyanide, whose production is triggered by HR in infected tissue, contributes to the resistance in rice plants via restriction of fungal growth.  相似文献   

2.
The final step in the biosynthesis of the plant hormone ethylene is catalyzed by the non-heme iron-containing enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACCO). ACC is oxidized at the expense of O(2) to yield ethylene, HCN, CO(2), and two waters. Continuous turnover of ACCO requires the presence of ascorbate and HCO(3)(-) (or an alternative form), but the roles played by these reagents, the order of substrate addition, and the mechanism of oxygen activation are controversial. Here these issues are addressed by development of the first functional single turnover system for ACCO. It is shown that 0.35 mol ethylene/mol Fe(II)ACCO is produced when the enzyme is combined with ACC and O(2) in the presence of HCO(3)(-) but in the absence of ascorbate. Thus, ascorbate is not required for O(2) activation or product formation. Little product is observed in the absence of HCO(3)(-), demonstrating the essential role of this reagent. By monitoring the EPR spectrum of the sample during single turnover, it is shown that the active site Fe(II) oxidizes to Fe(III) during the single turnover. This suggests that the electrons needed for catalysis can be derived from a fraction of the initial Fe(II)ACCO instead of ascorbate. Addition of ascorbate at 10% of its K(m) value significantly accelerates both iron oxidation and ethylene formation, suggesting a novel high-affinity effector role for this reagent. This role can be partially mimicked by a non-redox-active ascorbate analog. A mechanism is proposed that begins with ACC and O(2) binding, iron oxidation, and one-electron reduction to form a peroxy intermediate. Breakdown of this intermediate, perhaps by HCO(3)(-)-mediated proton transfer, is proposed to yield a high-valent iron species, which is the true oxidizing reagent for the bound ACC.  相似文献   

3.
4.
Han SE  Seo YS  Kim D  Sung SK  Kim WT 《Plant cell reports》2007,26(8):1321-1331
Fruit ripening involves complex biochemical and physiological changes. Ethylene is an essential hormone for the ripening of climacteric fruits. In the process of ethylene biosynthesis, cyanide (HCN), an extremely toxic compound, is produced as a co-product. Thus, most cyanide produced during fruit ripening should be detoxified rapidly by fruit cells. In higher plants, the key enzyme involved in the detoxification of HCN is β-cyanoalanine synthase (β-CAS). As little is known about the molecular function of β-CAS genes in climacteric fruits, we identified two homologous genes, MdCAS1 and MdCAS2, encoding Fuji apple β-CAS homologs. The structural features of the predicted polypeptides as well as an in vitro enzyme activity assay with bacterially expressed recombinant proteins indicated that MdCAS1 and MdCAS2 may indeed function as β-CAS isozymes in apple fruits. RNA gel-blot studies revealed that both MdCAS1 and MdCAS2 mRNAs were coordinately induced during the ripening process of apple fruits in an expression pattern comparable with that of ACC oxidase and ethylene production. The MdCAS genes were also activated effectively by exogenous ethylene treatment and mechanical wounding. Thus, it seems like that, in ripening apple fruits, expression of MdCAS1 and MdCAS2 genes is intimately correlated with a climacteric ethylene production and ACC oxidase activity. In addition, β-CAS enzyme activity was also enhanced as the fruit ripened, although this increase was not as dramatic as the mRNA induction pattern. Overall, these results suggest that MdCAS may play a role in cyanide detoxification in ripening apple fruits.  相似文献   

5.
Ethylene was produced by Verticillium dahliae Kleb. grown in liquid Czapek's medium. The rate of ethylene production was enhanced by light but was not affected by shaking or the growth rate of the cultures. L-, D- and DL-methionine, DL-ethionine and a -keto- y -methylthiobutyric acid (KMBA) were good substrates for ethylene production. KMBA may be an intermediate in ethylene production and it appears to be degraded to ethylene either enzymatically by peroxidase or photochemically in the presence of riboflavin. Addition of riboflavin or briefly heating the cultures to 100°C enhanced ethylene production greatly, while the addition of sodium azide, potassium cyanide and catalase were very inhibitory. The SS4 (non-defoliating) pathotype of V. dahliae produced significantly more ethylene (up to 108.4 nl ethylene h1 from 20 ml-10-day-old cultures) than did the T9 (defoliating) pathotype with all substrates tested. The results suggest that the in vitro rate of ethylene production is not related to the relative virulence of pathotypes of V. dahliae on cotton. A number of Verticillium species, Fusarium oxysporum f. sp. vasinfectum and Colletotrichum dematium var. truncatum were able to produce ethylene in liquid Czapek's medium containing 1 m M L-methionine under continuous light. Riboflavin, although highly stimulatory to ethylene production, caused a fungicidal reaction to all the fungi tested in Czapek's medium containing L-methionine under continuous light. The fungicidal effect of the riboflavin-methionine-light combination occurred at concentrations of riboflavin and methionine less than 1.33 μ M and 0.5 m M , respectively. No fungicidal activity was detected when the cultures were grown in total darkness or when either methionine or riboflavin was omitted from the culture medium.  相似文献   

6.
Control of the levels of the plant hormone ethylene is crucial in the regulation of many developmental processes and stress responses. Ethylene production can be controlled by altering endogenous levels of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor to ethylene or by altering its conversion to ethylene. ACC is known to be irreversibly broken down by bacterial or fungal ACC deaminases (ACDs). Sequence analysis revealed two putative ACD genes encoded for in the genome of Arabidopsis thaliana ( A. thaliana ) and we detected ACD activity in plant extracts. Expression of one of these A. thaliana genes ( AtACD1 ) in bacteria indicated that it had ACD activity. Moreover, transgenic plants harboring antisense constructs of the gene decreased ACD activity to 70% of wild-type (WT) levels, displayed an increased sensitivity to ACC and produced significantly more ethylene. Taken together, these results show that AtACD1 can act as a regulator of ACC levels in A. thaliana .  相似文献   

7.
8.
The plant hormone ethylene is involved in many developmental processes and responses to environmental stresses in plants. Although the elements of the signalling cascade and the receptors operating the ethylene pathway have been identified, a detailed understanding of the molecular processes related to signal perception and transfer is still lacking. Analysis of these processes using purified proteins in physical, structural and functional studies is complicated by the gaseous character of the plant hormone. In the present study, we show that cyanide, a π-acceptor compound and structural analogue of ethylene, is a suitable substitute for the plant hormone for in vitro studies with purified proteins. Recombinant ethylene receptor protein ETR1 (ethylene-resistant 1) showed high level and selective binding of [(14)C]cyanide in the presence of copper, a known cofactor in ethylene binding. Replacement of Cys(65) in the ethylene-binding domain by serine dramatically reduced binding of radiolabelled cyanide. In contrast with wild-type ETR1, autokinase activity of the receptor is not reduced in the ETR1-C65S mutant upon addition of cyanide. Additionally, protein-protein interaction with the ethylene signalling protein EIN2 (ethylene-insensitive 2) is considerably sustained by cyanide in wild-type ETR1, but is not affected in the mutant. Further evidence for the structural and functional equivalence of ethylene and cyanide is given by the fact that the ethylene-responsive antagonist silver, which is known to allow ligand binding but prevent intrinsic signal transduction, also allows specific binding of cyanide, but shows no effect on autokinase activity and ETR1-EIN2 interaction.  相似文献   

9.
Method for Rapid Detection of Cyanogenic Bacteria   总被引:9,自引:2,他引:7       下载免费PDF全文
An agar plate method is described in which the production of hydrogen cyanide by as many as 50 microbial isolates per plate may be detected. Cyanide produced by the organisms reacts with copper(II) ethylacetoacetate and 4,4′-methylenebis-(N,N-dimethylaniline) in a paper disk suspended above the microbial colonies. Cell growth occurs in depressions in the agar surface, which allows separation of colonies and enhances sensitivity of hydrogen cyanide detection.  相似文献   

10.
Germination of witchweed ( Striga hermonthica [Del.] Benth), an important root parasite on poaceous crops, requires pretreatment 'conditioning' in a warm moist environment and a subsequent exposure to a stimulant. The roles of conditioning period, CO2 and a strigol analogue (GR24) in ethylene biosynthesis and germination of the parasite were investigated. Conditioning increased the seeds' capacity to oxidize exogenous 1-aminocyclopropane-1-carboxylic acid (ACC). Exogenous CO2 increased the seeds capacity to oxidize ACC by 3- to 9-fold. A combination of GR24 and ACC increased ethylene production by more than 3-fold in comparison with the rates obtained using these compounds separately. Aminoethoxyvinylglycine (AVG) completely inhibited ethylene induction by GR24, but not by ACC. A GR24 treatment, made subsequent to conditioning in GR24, did not induce ethylene. However, seeds conditioned in GR24 and then given 1 m M ACC produced 293 nl l−1 ethylene. ACC oxidase (ACCO) activity in crude extracts was increased by conditioning and CO2. The enzyme displayed an absolute requirement for ascorbate. Absence of exogenous Fe2+ reduced enzyme activity only by 14%. GR24 applied during conditioning reduced germination in response to a subsequent GR24 treatment. ACC was, invariably, less effective in inducing S. hermonthica germination than GR24 even at concentrations which induce more ethylene than concurrent GR24 treatments. The results are consistent with a model in which conditioning removes a restriction on the ethylene biosynthetic pathway in S. hermonthica seeds. GR24 modulates the key enzymes in ethylene biosynthesis. The stimulant suppresses ethylene biosynthesis in unconditioned seeds and promotes it in conditioned ones. Germination of S. hermonthica results from the joint action of GR24 and the ethylene it induces.  相似文献   

11.
Antifreeze activity is induced by cold temperatures in winter rye (Secale cereale) leaves. The activity arises from six antifreeze proteins that accumulate in the apoplast of winter rye leaves during cold acclimation. The individual antifreeze proteins are similar to pathogenesis-related proteins, including glucanases, chitinases, and thaumatin-like proteins. The objective of this study was to study the regulation of antifreeze activity in response to ethylene and salicyclic acid, which are known regulators of pathogenesis-related proteins induced by pathogens. Nonacclimated plants treated with salicylic acid accumulated apoplastic proteins with no antifreeze activity. In contrast, when nonacclimated plants were exposed to ethylene, both antifreeze activity and the concentration of apoplastic protein increased in rye leaves. Immunoblotting revealed that six of the seven accumulated apoplastic proteins consisted of two glucanases, two chitinases, and two thaumatin-like proteins. The ethylene-releasing agent ethephon and the ethylene precursor 1-aminocyclopropane-1-carboxylate also induced high levels of antifreeze activity at 20 degrees C, and this effect could be blocked by the ethylene inhibitor AgNO(3). When intact rye plants were exposed to 5 degrees C, endogenous ethylene production and antifreeze activity were detected within 12 and 48 h of exposure to cold, respectively. Rye plants exposed to drought produced both ethylene and antifreeze activity within 24 h. We conclude that ethylene is involved in regulating antifreeze activity in winter rye in response to cold and drought.  相似文献   

12.
Ethylene is a gaseous plant growth hormone produced endogenously by almost all plants. It is also produced in soil through a variety of biotic and abiotic mechanisms, and plays a key role in inducing multifarious physiological changes in plants at molecular level. Apart from being a plant growth regulator, ethylene has also been established as a stress hormone. Under stress conditions like those generated by salinity, drought, waterlogging, heavy metals and pathogenicity, the endogenous production of ethylene is accelerated substantially which adversely affects the root growth and consequently the growth of the plant as a whole. Certain plant growth promoting rhizobacteria (PGPR) contain a vital enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which regulates ethylene production by metabolizing ACC (an immediate precursor of ethylene biosynthesis in higher plants) into α-ketobutyrate and ammonia. Inoculation with PGPR containing ACC deaminase activity could be helpful in sustaining plant growth and development under stress conditions by reducing stress-induced ethylene production. Lately, efforts have been made to introduce ACC deaminase genes into plants to regulate ethylene level in the plants for optimum growth, particularly under stressed conditions. In this review, the primary focus is on giving account of all aspects of PGPR containing ACC deaminase regarding alleviation of impact of both biotic and abiotic stresses onto plants and of recent trends in terms of introduction of ACC deaminase genes into plant and microbial species.  相似文献   

13.
Treatment of etiolated seedlings of barley (Hordeum vulgare) and soybean (Glycine max) with 1 millimolar 2,4-dichlorophenoxyacetic acid (2,4-D) resulted in a 14-fold and greater than 100-fold increase in ethylene production, respectively. Simultaneous monitoring of endogenous cyanide and β-cyanoalanine synthase (β-CAS) (EC 4.4. 1.9) activity was also performed. Endogenous levels of cyanide did not change in barley. In soybean, endogenous cyanide increased within 3 hours, increased again 6 hours after exposure to 2,4-D, and continued to increase throughout the experimental period. The activity of β-CAS increased in both barley and soybean 9 hours after herbicide treatment. The increase in cyanide preceded the increase in β-CAS activity by 3 to 6 hours in soybean. The steady-state concentration of endogenous cyanide in soybean was 1 micromolar, based on rates of ethylene production and cyanide metabolism by β-CAS. This agreed with the determination of endogenous cyanide by both distillation and isotope dilution. Given the apparent compartmentalization of β-CAS in mitochondria and the localization of ethylene/HCN production at the plasmalemma and/or tonoplast, our results suggest that extra-mitochondrial accumulation of cyanide in the cytoplasm may occur. If so, the activity of cyanide-sensitive cytoplasmic enzymes could be adversely affected, thus possibly contributing to the toxicity of 2,4-D.  相似文献   

14.
Continuous treatment with spermidine or 1-aminocyclopropane-1-carboxylic acid stimulated ethylene production and ethylene-forming enzyme activity and accelerated chlorophyll breakdown in detached tobacco leaves. The treatments also induced the production of eleven major acidic pathogenesis-related proteins, which were also produced during the hypersensitive reaction to tobacco necrosis virus. A delay between the onset of the stimulated ethylene increase and the detection of PR-proteins was found; ethylene production was stimulated after a few hours of treatment, whereas one, three and all the eleven PR-proteins were detected by polyacrylamide gel electrophoresis of fluid extracts after 2, 4 and 6 days of treatments, respectively. The possible causal relationship between stimulation of ethylene production and PR-protein accumulation is discussed.  相似文献   

15.
Meyer T  Burow M  Bauer M  Papenbrock J 《Planta》2003,217(1):1-10
Sulfurtransferases (STs) and beta-cyano- l-alanine synthase (CAS) are suggested to be involved in cyanide detoxification. Therefore, the accumulation of ST1 and CAS RNAs, and the ST and CAS protein levels and enzyme activities were determined in Arabidopsis thaliana Heynh. plants grown under different conditions. Senescence-associated processes were successfully induced by natural aging, by jasmonate methyl ester and by darkness in whole plants and detached leaves, as demonstrated by the expression of the senescence marker genes SAG12 and SAG13. However, the changes in RNA accumulation and protein levels of ST and CAS did not correlate with the expression of these senescence marker genes; the specific ST and CAS activities either decreased (ST) or increased (CAS). In another experiment, Arabidopsis plants were sprayed with cyanide to investigate the role of ST and CAS in cyanide detoxification. The expression of ST and CAS at the RNA and protein levels, and also the enzyme activities, remained equal in cyanide-treated and control plants. Incubation with 1-aminocyclopropane-1-carboxylic acid, the precursor of ethylene, increased while fumigation with ethylene decreased expression and activity of ST and CAS. In summary, cyanide does not induce the expression or enhance the activity of ST and CAS in Arabidopsis. For both proteins the evidence for a role in cyanide detoxification or induced senescence is low.  相似文献   

16.
17.
Plants display differential responses following mechanical damage and insect herbivory. Both caterpillar attack and the application of caterpillar oral secretions (OS) to wounded leaves stimulates volatile emission above mechanical damage alone. Volicitin ( N- 17-hydroxylinolenoyl- l -glutamine), present in beet armyworm (BAW, Spodoptera exigua ) OS, is a powerful elicitor of volatiles in excised maize seedlings ( Zea mays cv. Delprim). We consider some of the mechanistic differences between wounding and insect herbivory in maize by examining the activity of volicitin, changes in jasmonic acid (JA) levels, and volatile emission from both intact plant and excised leaf bioassays. Compared to mechanical damage alone, volicitin stimulated increases in both JA levels and sesquiterpene volatiles when applied to intact plants. In a bioassay comparison, excised leaves were more sensitive and produced far greater volatile responses than intact plants following applications of both volicitin and JA. In the excised leaf bioassay, volicitin applications (10–500 pmol) to wounded leaves resulted in dose dependent JA increases and a direct positive relationship between JA and sesquiterpene volatile emission. Interestingly, volicitin-induced JA levels did not differ between intact and excised bioassays, suggesting a possible interaction of JA with other regulatory signals in excised plants. In addition to JA, insect herbivory is known to stimulate the production of ethylene. Significant increases in ethylene were induced only by BAW herbivory and not by either wounding or volicitin treatments. Using intact plant bioassays, ethylene (at 1 µl l−1 or less) greatly promoted volatile emission induced by volicitin and JA but not mechanical damage alone. For intact plants, wounding, elicitor-induced JA and insect-induced ethylene appear to be important interacting components in the stimulation of insect-induced volatile emission.  相似文献   

18.
Cyanide is formed as a co-product of ethylene during the oxidation of 1-aminocyclo-propane-1-carboxylic acid (ACC) catalyzed by ACC oxidase. A toxic or regulatory function for cyanide in plant metabolism remains controversial. However, recent studies on the mode of action of auxin herbicides in sensitive plants suggest that the accumulation of tissue cyanide, derived ultimately from herbicide-stimulated ACC synthesis, is implicated in the induction of herbicide phytotoxicity. Furthermore, increases in cyanide levels have been observed during the formation of necrotic lesions in tobacco mosaic virus-infected tobacco leaves. It thus appears worthwhile to elucidate in more detail a possible role for cyanide in the induction of cell death under stress conditions which coincide with a strong stimulation of ethylene biosynthesis.  相似文献   

19.
Soil flooding increased 1-aminocyclopropane-1-carboxylic (ACC) acid oxidase activity in petioles of wild-type tomato (Lycopersicon esculentum L.) plants within 6 to 12 h in association with faster rates of ethylene production. Petioles of flooded plants transformed with an antisense construct to one isoform of an ACC oxidase gene (ACO1) produced less ethylene and had lower ACC oxidase activity than those of the wild type. Flooding promoted epinastic curvature but did so less strongly in plants transformed with the antisense construct than in the wild type. Exogenous ethylene, supplied to well-drained plants, also promoted epinastic curvature, but transformed and wild-type plants responded similarly. Flooding increased the specific delivery (flux) of ACC to the shoots (picomoles per second per square meter of leaf) in xylem sap flowing from the roots. The amounts were similar in both transformed and wild-type plants. These observations demonstrate that changes in ACC oxidase activity in shoot tissue resulting from either soil flooding or introducing ACC oxidase antisense constructs can influence rates of ethylene production to a physiologically significant extent. They also implicate systemic root to shoot signals in regulating the activity of ACC oxidase in the shoot.  相似文献   

20.
In comparison with ordinary methods of colorimetric evaluation of cyanogenic potential based on visual evaluation of the alkaline picrate reaction, a spectrophotometer-aided method could be more accurate (since it determines the exact amount of hydrogen cyanide released by the plant material), and less time-consuming as it can be performed on bulk material rather than on a number of individual plants. Ten white clover populations were evaluated by a spectrophotometer-aided method and by two visual evaluation criteria. All methods indicated the presence of large variation between populations. Visual methods gave almost identical results and allowed only for the distinction between cyanogenic and substantially acyanogenic populations. The results were only moderately consistent with those obtained by the spectrophotometer-aided method, which could detect the presence of variation also between cyanogenic populations. The effects of various incubation times (from 4 to 48 h) and of the addition of β-glucosidase on hydrogen cyanide release were also investigated. Comparable results for ranking of populations could be obtained over a range of incubation times, but at least 24 h were needed for a reliable estimation of the hydrogen cyanide produced by plants. The addition of enzyme did not increase the released cyanide. The effect of season and/or conditions of evaluation was marked on mean cyanogenic potential but limited on ranking of populations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号