首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Cell-free protein synthesis is a powerful method to explore the structure and function of membrane proteins and to analyze the targeting and translocation of proteins across the ER membrane. Developing a cell-free system based on cultured cells for the synthesis of membrane proteins could provide a highly reproducible alternative to the use of tissues from living animals. We isolated Sf21 microsomes from cultured insect cells by a simplified isolation procedure and evaluated the performance of the translocation system in combination with a cell-free translation system originating from the same source. The isolated microsomes contained the basic translocation machinery for polytopic membrane proteins including SRP-dependent targeting components, translocation channel (translocon)-dependent translocation, and the apparatus for signal peptide cleavage and N-linked glycosylation. A transporter protein synthesized with the cell-free system could be functionally reconstituted into a lipid bilayer. In addition, single and double labeling with non-natural amino acids could be achieved at both the lumen side and the cytosolic side in this system. Moreover, tail-anchored proteins, which are post-translationally integrated by the guided entry of tail-anchored proteins (GET) machinery, were inserted correctly into the microsomes. These results showed that the newly developed cell-free translocation system derived from cultured insect cells is a practical tool for the biogenesis of properly folded polytopic membrane proteins as well as tail-anchored proteins.  相似文献   

2.
In an in vitro system comprising a yeast cell-free translation system, yeast microsomes and mRNA encoding prepro-alpha-factor, the translocation of this protein across the membrane of the microsomal vesicle and its glycosylation could b uncoupled from its translation. Such post-translational processing is dependent upon the presence of ATP in the system. It is not, however, affected by a variety of uncouplers, ionophores or inhibitors, including carbonyl cyanide m-chlorophenyl hydrazone (CCCP), valinomycin, nigericin, dinitrophenol (DNP), potassium cyanide (KCN) or N-ethyl maleimide (NEM). This mechanism of translocation is significant as it indicates that a protein of 18 000 daltons is capable of crossing an endoplasmic reticulum-derived membrane post-translationally. For the moment, this phenomenon seems to be restricted to prepro-alpha-factor in the yeast in vitro system. Neither invertase nor IgG chi light chain could be translocated post-translationally in yeast, nor was such processing observed for prepro-alpha-factor in a wheat germ system supplemented with canine pancreatic microsomes.  相似文献   

3.
F Lévy  R Gabathuler  R Larsson  S Kvist 《Cell》1991,67(2):265-274
We have translated the HLA-B27 heavy chain in vitro and studied its assembly with beta 2-microglobulin and peptide in microsomes from human cells. The assembly process requires ATP. However, the translocation of peptide across the endoplasmic reticulum (ER) membrane does not require ATP, and binding of biotinylated peptide to BiP, an ER luminal protein, occurs after ATP depletion. Proteinase K treatment of the microsomes does not block peptide translocation. Thus, ATP is required in the lumen of the ER for efficient assembly to occur. Microsomes prepared from Raji and T1 cells show similar levels of assembly, whereas assembly in T2 microsomes is 10-fold lower. This difference remains after peptide stimulation of assembly. The inefficient assembly in T2 microsomes is not due to impaired peptide translocation across the ER membrane, as no difference was found compared with microsomes from T1 cells. Instead, the defect seems to reside in the lumen of the ER.  相似文献   

4.
5.
We identified a human cDNA sequence encoding a polypeptide of 760 amino acids that shares 53% homology and 25.6% identity with the yeast DnaJ-like endoplasmic reticulum (ER) translocon component Sec63p. Three epitope-specific antisera revealed a protein of an apparent molecular mass of 83 kDa, both in human cell extracts and in dog pancreatic microsomes. Biochemical analyses show that it is an integral membrane protein of the rough ER, which has the DnaJ domain located in the ER lumen. The novel Sec63 protein could thus represent a key component of the mammalian ER protein translocation machinery.  相似文献   

6.
EDTA/KCl- or pyrophosphate-treated rough microsomes of rat liver clearly showed the co-translational cleavage of pre-human placental lactogen and translocation of the product into membrane vesicles. The signal peptidase fraction was isolated by chromatography on Sephacryl S-300 of deoxycholate-treated membranes and reconstituted into liposomes by dialysis or by the Biobeads SM-2 method. Assay of the signal peptidase activity was performed with pre-human placental lactogen synthesized by the reticulocyte lysate system programmed with human placental lactogen mRNA. The signal peptidase reconstituted into liposomes showed stable activity over the temperature range of 0 to 45 degrees C; in contrast, the detergent-solubilized signal peptidase of dog pancreatic membranes was completely inactivated at the unusually low temperature of 37 degrees C. It was shown that this inactivation was due to the presence of detergent. Signal peptidase from rat liver was insensitive to a variety of protease inhibitors, like the enzyme from dog pancreas, but differed from the latter in being inhibited by chymostatin and TPCK.  相似文献   

7.
Signal sequences play a central role in the initial membrane translocation of secretory proteins. Their functions depend on factors such as hydrophobicity and conformation of the signal sequences themselves. However, some characteristics of mature proteins, especially those of the N-terminal region, might also affect the function of the signal sequences. To examine this possibility, several mutants of human lysozyme modified in the N-terminal region of the mature protein were constructed, and their secretion in yeast as well as in vitro translocation into canine pancreatic microsomes were analyzed using an idealized signal sequence L8 (MR(L)8PLAALG). Our results show the following. (1) Change in the charge at the N-terminal residue of the mature protein does not affect secretion drastically. (2) Substitution of a proline residue at the N terminus prevents cleavage of the signal sequence, although translocation itself is not impaired. (3) Excessive positive charges in the N-terminal region delay translocation of the precursor protein across the membrane. (4) Polar and negatively charged residues introduced into the N-terminal region affect the secretion of the mature protein by preventing its correct folding.  相似文献   

8.
Rat liver microsomes were subfractionated by isopycnic centrifugation in sucrose gradient. The subfractions were assayed for translocation and proteolytic processing of nascent polypeptides in a rabbit reticulocyte lysate programmed with total RNA from human term placenta. The distribution of the translocation and processing of prelactogen through the gradient correlated with that of the microsomal RNA (ribosomes). Microsomes became inactive upon incubation with elastase, but the proteolyzed membranes recovered their activity by recombination with the soluble and active fragment of the docking protein (SRP-receptor) from dog pancreas. When this fragment was combined with the gradient subfractions, or with the subfractions inactivated by incubation with elastase, the density profile of the translocation activity remained similar to that of RNA. Thus, its distribution cannot be accounted for merely by that of the docking protein; another membrane constituent, still unidentified, is both necessary for translocation of polypeptides and restricted to the rough portions of the endosplamic reticulum. Signal peptidase was assayed in the absence of protein synthesis, by use of preformed prelactogen and detergent-disrupted microsomes. Its density distribution was also similar to that of RNA. Several components of the endosplamic reticulum now appear to be segregated within restricted areas on either side of the membrane, and to make up a biochemically distinct domain. We propose to call it the ribosomal domain in consideration of its contribution to protein biosynthesis by bound ribosomes. This domain probably accounts for a greater part of the membrane area at the cytoplasmic than at the luminal surface, as postulated earlier to explain how enzymes of the cytoplasmic surface are relatively less abundant in the rough microsomes than those of the luminal surface [Amar-Costesec A. & Beaufay H. (1981) J. Theor. Biol. 89, 217-230].  相似文献   

9.
The human glucose transporter can insert posttranslationally into microsomes   总被引:40,自引:0,他引:40  
M Mueckler  H F Lodish 《Cell》1986,44(4):629-637
  相似文献   

10.
The type I iodothyronine deiodinase (ID-I) of liver is an important enzyme for the conversion of the prohormone thyroxine (T4) to the active thyroid hormone 3,3',5-triiodothyronine (T3). Because it is an integral membrane protein of low abundance, purification of ID-I from rat liver has proven to be difficult. We have analyzed ID-I in liver microsomal fractions from various animals to reveal possible species differences and to explore alternative sources for the isolation of the enzyme. ID-I was characterized by enzyme assay with 3,3',5'-triiodothyronine (rT3) as the preferred substrate and by affinity-labeling with N-bromoacetyl-[125I]T3 (BrAc[125I]T3). Labeled ID-I subunit was identified and quantified by SDS-PAGE and autoradiography. The Mr of ID-I in the species investigated varied between 25.7 and 29.1 kDa. Rat and dog liver microsomes had a markedly higher enzyme content than microsomes of human, mouse, rabbit, cow, pig, sheep, goat, chicken or duck liver. Rat liver microsomes showed the highest ID-I activity of all species examined. Turnover numbers for ID-I varied between 264 and 1059 min-1, with rabbit and goat showing the highest values. However, dog liver ID-I displayed an exceptionally low turnover number of 78 min-1. In conclusion, ID-I has similar properties in all species examined with the notable exception of dog.  相似文献   

11.
Insulin's effect on glucose transport activity and the subcellular distribution of glucose transporters have been examined in isolated human abdominal adipose cells, by measuring 3-O-methylglucose transport and specific D-glucose-inhibitable cytochalasin B binding to plasma membranes and low-density microsomes, respectively. Insulin appears to stimulate glucose transport in isolated human adipose cell through the translocation of glucose transporters from a large intracellular pool to the plasma membrane as initially postulated for rat adipose and muscle cells.  相似文献   

12.
The metazoan Sec61 translocon transports polypeptides into and across the membrane of the endoplasmic reticulum via two major routes, a well-established co-translational pathway and a post-translational alternative. We have used two model substrates to explore the elements of a secretory protein precursor that preferentially direct it towards a co- or post-translational pathway for ER translocation. Having first determined the capacity of precursors to enter ER derived microsomes post-translationally, we then exploited semi-permeabilized mammalian cells specifically depleted of key membrane components using siRNA to address their contribution to the membrane translocation process. These studies suggest precursor chain length is a key factor in the post-translational translocation at the mammalian ER, and identify Sec62 and Sec63 as important components acting on this route. This role for Sec62 and Sec63 is independent of the signal sequence that delivers the precursor to the ER. However, the signal sequence can influence the subsequent membrane translocation process, conferring sensitivity to a small molecule inhibitor and dictating reliance on the molecular chaperone BiP. Our data support a model where secretory protein precursors that fail to engage the signal recognition particle, for example because they are short, are delivered to the ER membrane via a distinct route that is dependent upon both Sec62 and Sec63. Although this requirement for Sec62 and Sec63 is unaffected by the specific signal sequence that delivers a precursor to the ER, this region can influence subsequent events, including both Sec61 mediated transport and the importance of BiP for membrane translocation. Taken together, our data suggest that an ER signal sequence can regulate specific aspects of Sec61 mediated membrane translocation at a stage following Sec62/Sec63 dependent ER delivery.  相似文献   

13.
The lipid composition of rough and smooth microsomal membranes, zymogen granule membranes, and a plasmalemmal fraction from the guinea pig pancreatic exocrine cell has been determined. As a group, membranes of the smooth variety (i.e., smooth microsomes, zymogen granule membranes, and the plasmalemma) were similar in their content of phospholipids, cholesterol and neutral lipids, and in the ratio of total lipids to membrane proteins. In contrast, rough microsomal membranes contained much less sphingomyelin and cholesterol and possessed a smaller lipid/protein ratio. All membrane fractions were unusually high in their content of lysolecithin (up to ~20% of the total phospholipids) and of neutral lipids, especially fatty acids. The lysolecithin content was shown to be due to the hydrolysis of membrane lecithin by pancreatic lipase; the fatty acids, liberated by the action of lipase on endogenous triglyceride stores, are apparently scavenged by the membranes from the suspending media. Similar artifactually high levels of lysolecithin and fatty acids were noted in hepatic microsomes incubated with pancreatic postmicrosomal supernatant. E 600, an inhibitor of lipase, largely prevented the appearance of lysolecithin and fatty acids in pancreatic microsomes and in liver microsomes treated with pancreatic supernatant.  相似文献   

14.
The metabolization of exogenous GM1 in normal human fibroblasts at a subcellular level is investigated in the present paper. For this a GM1 ganglioside, radiolabelled on the sphingosine moiety, was given to the cells and all the formed metabolites analyzed, in a time-course study, in enriched fractions of lysosomes, plasma membrane and microsomes. After feeding the cells, the radioactivity incorporation was relevant in the enriched lysosomal and plasma membrane subfractions whereas it was modest in the enriched microsomal fraction. The kinetic curves obtained for each enriched fraction, following a 3-day chase period, suggested a translocation of exogenous GM1 from the plasma membrane to the lysosomal apparatus and, of GM1 itself together with its metabolites, to the Golgi or endoplasmic reticulum and finally again to the plasma membrane.  相似文献   

15.
16.
Oleosin proteins from Arabidopsis assume a unique endoplasmic reticulum (ER) topology with a membrane-integrated hydrophobic (H) domain of 72 residues, flanked by two cytosolic hydrophilic domains. We have investigated the targeting and topological determinants present within the oleosin polypeptide sequence using ER-derived canine pancreatic microsomes. Our data indicate that oleosins are integrated into membranes by a cotranslational, translocon-mediated pathway. This is supported by the identification of two independent functional signal sequences in the H domain, and by demonstrating the involvement of the SRP receptor in membrane targeting. Oleosin topology was manipulated by the addition of an N-terminal cleavable signal sequence, resulting in translocation of the N terminus to the microsomal lumen. Surprisingly, the C terminus failed to translocate. Inhibition of C-terminal translocation was not dependent on either the sequence of hydrophobic segments in the H domain, the central proline knot motif or charges flanking the H domain. Therefore, the topological constraint results from the length and/or the hydrophobicity of the H domain, implying a general case that long hydrophobic spans are unable to translocate their C terminus to the ER lumen.  相似文献   

17.
We have used a cytosol-free assay in which efficient translocation and signal peptide cleavage is achieved when the affinity-purified precursor of OmpA (proOmpA) is diluted out of 8 M urea into a suspension of yeast rough microsomes. This aspect of protein targeting and transport occurs in two discernible steps: (a) in the absence of ATP and cytosolic factors, the precursor binds to the membranes but is not translocated; (b) addition of ATP results in the translocation of the bound precursor and its processing to the mature form. The binding to microsomes of radiolabeled proOmpA is saturable and inhibited by the addition of unlabeled proOmpA but not by mature OmpA or other proteins. The binding of radiolabeled prepro-alpha-factor is also effectively competed by other preproteins, but not by mature ones. Scatchard analysis showed the Kd of proOmpA to be 7.5 X 10(-9) M. Binding is most likely protein mediated as treatment of the microsomes with the protease papain was found to be inhibitory. These results represent the first functional characterization of secretory protein precursor binding to membranes. Alkylation of the microsomes with NEM, washing the membranes with urea or using membranes from the (translocation) mutant ptll at the nonpermissive temperature, did not affect binding, but did eliminate the subsequent ATP-dependent translocation. The ability to subdivide translocation into individual reactions provides a more precise means of determining the membrane components involved in this process.  相似文献   

18.
An antibody to a UDP-glucuronosyltransferase (UDPGT) isoenzyme which catalyzes the glucuronidation of p-nitrophenol (PNP) in rabbit liver was raised in sheep and used to identify immunologically similar UDPGTs in rabbit and human livers. Immunoblotting experiments showed that the antisera specifically recognized PNP UDPGT but not estrone UDPGT purified from rabbit liver. Sheep anti-rabbit liver PNP UDPGT IgG immunoprecipitated PNP, 1-naphthol, and 4-methylumbelliferone glucuronidation activities in rabbit and human liver microsomal preparations. In rabbit liver microsomes the antibody did not immunoprecipitate estrone or estradiol glucuronidation activities. In human liver microsomes, 4-aminobiphenyl but not estriol glucuronidation activities were immunoprecipitated, suggesting that the antibody recognizes a specific UDPGT (pI 6.2) in human liver microsomes.  相似文献   

19.
Electron-dense deposits representing calcium oxalate crystals which result from ATP-dependent calcium uptake have been localized within vesicles of of a heavy microsomal fraction prepared from mouse pancreatic acini. In the absence of either ATP or oxalate, no electron-dense deposits could be observed. By subfractionation of microsomes on discontinuous sucrose gradients, it could be shown that the highest energy-dependent calcium transport activity was associated with the rough endoplasmic reticulum. In rough microsomes, the 45Ca2+-uptake measured was 7 times greater than that of smooth microsomes in the presence of ATP and oxalate and about 3 times greater in he presence of ATP alone. When ribosomes were released from the rough endoplasmic reticulum vesicles by treatment with KCl in the presence of puromycin, the stripped microsomes showed a 40% increase in the specific 45Ca2+-uptake activity measured in he presence of ATP and oxalate and an increase of 80 to 90% in the presence of ATP alone. From these results it can be concluded that the calcium transport activity of microsomes prepared from mouse pancreatic acini is located predominantly in the rough endoplasmic reticulum membrane.  相似文献   

20.
The cotranslational translocation of proteins across the ER membrane involves the tight binding of translating ribosomes to the membrane, presumably to ribosome receptors. The identity of the latter has been controversial. One putative receptor candidate is Sec61 alpha, a multi- spanning membrane protein that is associated with two additional membrane proteins (Sec61 beta and gamma) to form the Sec61p-complex. Other receptors of 34 and 180 kD have also been proposed on the basis of their ability to bind at low salt concentration ribosomes lacking nascent chains. We now show that the Sec61p-complex has also binding activity but that, at low salt conditions, it accounts for only one third of the total binding sites in proteoliposomes reconstituted from a detergent extract of ER membranes. Under these conditions, the assay has also limited specificity with respect to ribosomes. However, if the ribosome-binding assay is performed at physiological salt concentration, most of the unspecific binding is lost; the Sec61p- complex then accounts for the majority of specific ribosome-binding sites in reconstituted ER membranes. To study the membrane interaction of ribosomes participating in protein translocation, native rough microsomes were treated with proteases. The amount of membrane-bound ribosomes is only slightly reduced by protease treatment, consistent with the protease-resistance of Sec61 alpha which is shielded by these ribosomes. In contrast, p34 and p180 can be readily degraded, indicating that they are not essential for the membrane anchoring of ribosomes in protease-treated microsomes. These data provide further evidence that the Sec61p-complex is responsible for the membrane- anchoring of ribosomes during translocation and make it unlikely that p34 or p180 are essential for this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号