首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of automated fluorescent DNA sequencer systems and PCR-based DNA sequencing methods plays an important role in the actual effort to improve the efficiency of large-scale DNA analysis. While dideoxy-terminators labeled with energy-transfer dyes (BigDyes) provide the most versatile method of automated DNA sequencing, premature terminations result in a substantially reduced reading length of the DNA sequence. Premature terminations are usually evidenced by base ambiguities and are often accompanied by diminished signal intensity from that point on in the sequence. I studied a two-step protocol for Taq cycle sequencing using the ABI BigDye terminator for reducing premature terminations in DNA sequences. I demonstrate that combining the annealing step with the extension step at one temperature (60°C) reduces premature terminations in DNA sequences that regularly contain premature terminations when the three temperature steps are used. This modification significantly increases the number of accurately read bases in DNA sequences.  相似文献   

2.
3.
A label-free method for DNA sequencing based on the principle of the Millikan oil drop experiment was developed. This sequencing-by-synthesis approach sensed increases in bead charge as nucleotides were added by a polymerase to DNA templates attached to beads. The balance between an electrical force, which was dependent on the number of nucleotide charges on a bead, and opposing hydrodynamic drag and restoring tether forces resulted in a bead velocity that was a function of the number of nucleotides attached to the bead. The velocity of beads tethered via a polymer to a microfluidic channel and subjected to an oscillating electric field was measured using dark-field microscopy and used to determine how many nucleotides were incorporated during each sequencing-by-synthesis cycle. Increases in bead velocity of approximately 1% were reliably detected during DNA polymerization, allowing for sequencing of short DNA templates. The method could lead to a low-cost, high-throughput sequencing platform that could enable routine sequencing in medical applications.  相似文献   

4.
A simple technique for direct sequencing of PCR-amplified templates without purification of the PCR reaction product is presented. This method does not require an additional synthesis step after template amplification, and can generate sequence information form as little as 0.1 fmol of unpurified template.  相似文献   

5.
Polymerase chain reaction (PCR) amplification and deoxyribonucleic acid (DNA) sequence analysis were used to identify the species origin of cell lines used in a cell culture facility where various cell lines of different species are routinely propagated. The aldolase gene family was selected for PCR amplification because the DNA sequences of this gene are highly conserved over a wide range of animals and humans. A total of 36 cell lines representing 13 different species were selected for this study. The DNA from each cell line was amplified, and PCR products were analyzed by agarose gel electrophoresis. The results showed unique profiles of amplified bands on agarose gels that allowed differentiation among non-closely related species. However, DNA amplification of closely related species, including rat and mouse or human and primate, resulted in similar and indistinguishable banding patterns that could be further differentiated by DNA sequence analysis. These results suggested that aldolase gene amplification coupled with DNA sequence analysis is a useful tool for identification of cell lines and has potential application for use in identification of interspecies cross-contamination.  相似文献   

6.
A new approach for optically sequencing ensembles of single DNA molecules using DNA polymerase to mediate the consecutive incorporation of fluorochrome-labeled nucleotides into an array of large single DNA molecules is presented. The approach utilizes cycles of labeled fluorochrome addition, detection to count incorporations, and bleaching to reset the counter. These additions are imaged and analyzed to estimate the number of labeled additions and to correlate them on a per-locus basis along DNA backbones. Initial studies used precisely labeled polymerase chain reaction products to aid the development and validation of simple models of fluorochrome point spread functions within the imaging system. In complementary studies, nucleotides labeled with the fluorochrome R110 were incorporated into surface-elongated lambda DNA, and fluorescent signals corresponding to the addition of R110-dUTP were counted and assigned precise loci along DNA backbones. The labeled DNAs were then subjected to photobleaching and to a second cycle of addition of R110-labeled nucleotides-a second round of additions was correlated with the first to establish strings of addition histories among the ensemble of largely double-stranded templates. These results confirm the basic operational validity of this approach and point the way to the development of a practical system for optical sequencing.  相似文献   

7.
A simple method for the identification of gap-bridging subclones in DNA sequencing is described.This work was carried out in the laboratory of Dr Johnston at the John Innes Institute, Norwich, NR4 7UH, UK.  相似文献   

8.
The treatment of DNA with bisulfite, which converts C to U but leaves 5-methyl-C unchanged, forms the basis of many analytical techniques for DNA methylation analysis. Many techniques exist for measuring the methylation state of a single CpG but, for analysis of an entire region, cloning and sequencing remains the gold standard. However, biases in polymerase chain reaction (PCR) amplification and in cloning can skew the results. We hypothesized that single-molecule PCR (smPCR) amplification would eliminate the PCR amplification bias because competition between templates that amplify at different efficiencies no longer exists. The amplified products can be sequenced directly, thus eliminating cloning bias. We demonstrated this accurate and unbiased approach by analyzing a sample that was expected to contain a 50:50 ratio of methylated to unmethylated molecules: a region of the X-linked FMR1 gene from a human female cell line. We compared traditional cloning and sequencing to smPCR and sequencing. Sequencing smPCR products gave an expected methylated to unmethylated ratio of 48:52, whereas conventional cloning and sequencing gave a biased ratio of 72:28. Our results show that smPCR sequencing can eliminate both PCR and cloning bias and represents an attractive approach to bisulfite sequencing.  相似文献   

9.
System for DNA sequencing with resolution of up to 600 base pairs   总被引:16,自引:0,他引:16  
A system capable of resolving about 500 bases is of interest for sequencing of longer DNA molecules. Studies on further optimization of resolution on DNA sequencing gels were carried out. The effect of physico-chemical properties of gels and buffers on resolution were tested, e.g. ionic strength and pH of buffers, different buffer systems, acrylamide concentration, crosslinker concentration, type of crosslinker, temperature of polymerization, denaturing conditions, gel length and thickness. Tested were as well different running conditions like electric field, gel temperature, dimension of sample slots. Gels 0.1-0.2 mm thick and up to 1.2 m long were cast and tested routinely. Gel lengths of 60-70 cm (for sequencing up to 350-400 bases) to about 100 cm (above 400 bases) are practicable. Little is gained in resolution by increasing the gel length from 1 to 1.2 m. Resolution was improved using 0.1 mm thick gels, at a higher pH value of 8.6-8.8, and molarity increased to 0.2 M. The sequencing pattern in the region of higher bases could be better resolved on a twice-magnified picture of that region on the autoradiogram. With the long gels (70-120 cm), it is advantageous to obtain the sequence overlap by running in parallel gels of different concentrations, without re-application of samples, all loaded at the same time. Buffer chamber for running of two of three gels and thermostating plates up to 1.2 m long were designed. In this way four to six thermostated gels can be run from a power supply with two inputs. Three 1 m long gels (concentrations: 4%, 6%, 12-16%) are loaded with several samples of DNA to be sequenced and run in parallel without re-application of the samples. With good samples, the sequence overlap from the gels could be counted up to 500 base pairs, with exceptionally good samples closer to 600 bases. At present this number seems to be near the limit of the resolving power of the polyacrylamide gels.  相似文献   

10.
Keratan sulfate (KS) is present as a contaminant in chondroitin sulfate (CS) mainly extracted from shark cartilage. We report a selective removal procedure of KS in CS samples by means of sequential precipitation with ethanol. Purified shark CS containing approximately 10% to 15% KS was subjected to a precipitation procedure in the presence of increasing percentages of saturated ethanol. In contrast to other solvents, 1.0 volume of ethanol was able to selectively purify CS, with a purity of approximately 100%, from KS. The current selective and simple procedure appears to be a reliable industrial preparation of CS devoid of large amounts of the residual KS.  相似文献   

11.
12.
Dideoxy DNA sequencing with end-labeled oligonucleotide primers   总被引:17,自引:0,他引:17  
End-labeled oligonucleotide primers may be used effectively as the source of radiolabel in DNA sequencing by the dideoxy method. The approach is demonstrated with various end-labeled oligonucleotides, including a commercially prepared universal primer and a mixed-sequence probe. Single-stranded (M13) or denatured double-stranded template may be used. The end-labeled primers and their extension products may be stored for weeks. The method is useful for identification of clones isolated by oligonucleotide hybridization and it provides a convenient, economical alternative to the use of alpha-labeled deoxynucleoside triphosphate.  相似文献   

13.
DNA sequencing has revolutionized biomedicine, and progress in the field has been unrelenting since it was invented over 30 years ago. The complete DNA sequence of the human genome was obtained as the culmination of a decade of work by a large number of scientists. Less than ten years later, so-called ‘next-generation’ instruments now make it possible for a single lab to produce the same amount of data in a week. But while the instruments are increasingly automated, upstream sample processing remains a challenge. Here I review the current state of the art in preparing genomic and RNA samples for high throughput sequencing.  相似文献   

14.
The degenerate primer-based sequencing Was developed by a synthesis method(DP-SBS)for high-throughput DNA sequencing,in which a set of degenerate primers are hybridized on the arrayed DNA templates and extended by DNA polymerase on microarrays.In this method,adifferent set of degenerate primers containing a give nnumber(n)of degenerate nucleotides at the 3'-ends were annealed to the sequenced templates that were immobilized on the solid surface.The nucleotides(n 1)on the template sequences were determined by detecting the incorporation of fluorescent labeled nucleotides.The fluorescent labeled nucleotide was incorporated into the primer in a base-specific manner after the enzymatic primer extension reactions and nine-base length were read out accurately.The main advanmge of the DP-SBS is that the method only uses very conventional biochemical reagents and avoids the complicated special chemical reagents for removing the labeled nucleotides and reactivating the primer for further extension.From the present study,it is found that the DP-SBS method is reliable,simple,and cost-effective for laboratory-sequencing a large amount of short DNA fragments.  相似文献   

15.
We have developed a polymerase chain reaction (PCR) method for sequencing of tobacco chloroplast genome. In a mixture containing chloroplast DNA, 5-end-labeled oligonucleotide primer, Taq DNA polymerase and reaction buffer, we were able to sequence a segment of chloroplast 16S rRNA gene. The results showed that the 750 bp of DNA sequenced were identical to the sequence reported, indicating that direct sequencing method that we have developed is useful for the sequencing of chloroplast genome. To analyze the chloroplast genome more rapidly in those in vitro grown plantlets, we also developed a simple method which is applicable for the amplifications and sequencing of chloroplast 16S rRNA fragment from either 0.15 g of tobacco leaf or stem tissue. The readable sequences obtained from the presented methods were consistent with the published sequence.  相似文献   

16.
Multiple Displacement Amplification (MDA) of DNA using φ29 (phi29) DNA polymerase amplifies DNA several billion-fold, which has proved to be potentially very useful for evaluating genome information in a culture-independent manner. Whole genome sequencing using DNA from a single prokaryotic genome copy amplified by MDA has not yet been achieved due to the formation of chimeras and skewed amplification of genomic regions during the MDA step, which then precludes genome assembly. We have hereby addressed the issue by using 10 ng of genomic Vibrio cholerae DNA extracted within an agarose plug to ensure circularity as a starting point for MDA and then sequencing the amplified yield using the SOLiD platform. We successfully managed to assemble the entire genome of V. cholerae strain LMA3984-4 (environmental O1 strain isolated in urban Amazonia) using a hybrid de novo assembly strategy. Using our method, only 178 out of 16,713 (1%) of contigs were not able to be inserted into either chromosome scaffold, and out of these 178, only 3 appeared to be chimeras. The other contigs seem to be the result of template-independent non-specific amplification during MDA, yielding spurious reads. Extraction of genomic DNA within an agarose plug in order to ensure circularity of the extracted genome might be key to minimizing amplification bias by MDA for WGS.  相似文献   

17.
Methylated DNA immunoprecipitation sequencing (MeDIP-Seq) is a widely used approach to study DNA methylation genome-wide. Here, we developed a MeDIP-Seq protocol compatible with the Ion Torrent semiconductor-based sequencing platform that is low cost, rapid, and scalable. We applied this protocol to demonstrate MeDIP-Seq on the Ion Torrent platform provides adequate coverage of CpG cytosines, the methylation states of which we validated at single-base resolution on the Infinium HumanMethylation450 BeadChip array, and accurately identifies sites of differential DNA methylation. Furthermore, we applied an integrative approach to further investigate and confirm the role of DNA methylation in alternative splicing and to profile 5mC and 5hmC variants of DNA methylation in normal human brain tissue that is localized over distinct genomic regions. These applications of MeDIP-Seq on the Ion Torrent platform have broad utility and add to the current methodologies for profiling genome-wide DNA methylation states in normal and disease conditions.  相似文献   

18.
Caragana korshinskii hemicelluloses were isolated with 10% KOH at 25 °C for 10 h from the delignified materials. The alkali-extractable hemicelluloses were then successively sub-fractionated by graded precipitation at final ethanol concentrations of 10%, 20%, 30%, 45%, 60%, and 80%, respectively. Neutral sugars and molecular weight analyses of the six hemicellulosic subfractions revealed that the molecular weights and the distribution of branches along the xylan backbone are different among the hemicellulosic fractions obtained in various ethanol concentrations. The less branched hemicelluloses with large molecules were precipitated in lower ethanol percentages, while with the increasing ethanol concentrations, more branched hemicelluloses with low molecular weights were obtained. 1H and 13C NMR studies revealed that the hemicellulosic subfraction precipitated at an ethanol concentration of 45% had a backbone of d-xylose residues and were branched mainly through 4-O-methyl-α-d-glucopyranosyl units.  相似文献   

19.
Bisulfite sequencing is widely used for analysis of DNA methylation status (i.e., 5-methylcytosine [5mC] vs. cytosine [C]) in CpG-rich or other loci in genomic DNA (gDNA). Such methods typically involve reaction of gDNA with bisulfite followed by polymerase chain reaction (PCR) amplification of specific regions of interest that, overall, converts C→T (thymine) and 5mC→C and then capillary sequencing to measure C versus T composition at CpG sites. Massively parallel sequencing by oligonucleotide ligation and detection (SOLiD) has recently enabled relatively low-cost whole genome sequencing, and it would be highly desirable to apply such massively parallel sequencing to bisulfite-converted whole genomes to determine DNA methylation status of an entire genome, which has heretofore not been reported. As an initial step toward achieving this goal, we have extended our ongoing interest in improving bisulfite conversion sample preparation to include a human genome-wide fragment library for SOliD. The current article features novel use of formamide denaturant during bisulfite conversion of a suitably constructed library directly in a band slice from polyacryamide gel electrophoresis (PAGE). To validate this new protocol for 5mC-protected fragment library conversion, which we refer to as Bis-PAGE, capillary-based size analysis and Sanger sequencing were carried out for individual amplicons derived from single-molecule PCR (smPCR) of randomly selected library fragments. smPCR/Capillary Sanger sequencing of approximately 200 amplicons unambiguously demonstrated greater than 99% C→T conversion. All of these approximately 200 Sanger sequences were analyzed with a previously published web-accessible bioinformatics tool (methBLAST) for mapping to human chromosomes, the results of which indicated random distribution of analyzed fragments across all chromosomes. Although these particular Bis-PAGE conversion and quality control methods were exemplified in the context of a fragment library for SOLiD, the concepts can be generalized to include other genome-wide library constructions intended for DNA methylation analysis by alternative high-throughput or massively parallelized methods that are currently available.  相似文献   

20.
Thermal cycle dideoxy DNA sequencing   总被引:1,自引:0,他引:1  
Thermal cycle dideoxy DNA sequencing eliminates the requirements for independent primer annealing and double-stranded DNA denaturation steps. The method enables sequencing from nanogram amounts of DNA from double-stranded and single-stranded PCR products, and plasmid or phage DNA templates. Thermal cycle sequencing also enables direct sequencing from bacterial colonies or phage plaques. Protocols using the Vent exo DNA polymerase, helpful suggestions, and a troubleshooting guide are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号