首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The generation of DNA aptamer by Systematic Evolution of Ligands by Exponential Enrichment requires a good method of ssDNA generation. There are various methods developed to generate ssDNA such as streptavidin-biotin based separation techniques, asymmetric PCR and strand separation of the PCR product containing primer with a terminator and an extension of 20 nucleotides on denaturing urea-polyacrylamide gel. In the present investigation, we have shown the possible improvements for the regular lambda nuclease digestion under optimized conditions. Optimization of the PCR cycles, time course studies on lambda nuclease digestion and purification of the ssDNA from the lambda exonuclease digestion mixture was found to be able to recover ssDNA amounting up to 39.19 ± 2.48 % of the starting amount of dsDNA. These strategies can be applied to the techniques involving essential usage of ssDNA.  相似文献   

2.
DNA methylation plays a vital role in the regulation of gene expression. Abnormal promoter hypermethylation is an important mechanism of inactivating tumor suppressor genes in human cancers. Combined bisulfite restriction analysis (COBRA) is a widely used method for identifying the DNA methylation of specific CpG sites. Here, we report that exonuclease I and heat-labile alkaline phosphatase can be used for PCR purification for COBRA, improving the visibility of gel electrophoresis after restriction digestion. This improvement is observed when restriction digestion is performed at a high temperature, such as 60 °C or 65 °C, with BstUI and TaqI, respectively. This simple method can be applied instead of DNA purification using spin columns or phenol/chloroform extraction. It can also be applied to other situations when PCR products are digested by thermophile-derived restriction enzymes, such as PCR restriction fragment length polymorphism (RFLP) analysis.  相似文献   

3.
We have developed a method that allows quantitative amplification of single-stranded DNA (QAOS) in a sample that is primarily double-stranded DNA (dsDNA). Single-stranded DNA (ssDNA) is first captured by annealing a tagging primer at low temperature. Primer extension follows to create a novel, ssDNA-dependent, tagged molecule that can be detected by PCR. Using QAOS levels of between 0.2 and 100% ssDNA can be accurately quantified. We have used QAOS to characterise ssDNA levels at three loci near the right telomere of chromosome V in budding yeast cdc13-1 mutants. Our results confirm and extend previous studies which demonstrate that when Cdc13p, a telomere-binding protein, is disabled, loci close to the telomere become single stranded whereas centromere proximal sequences do not. In contrast to an earlier model, our new results are consistent with a model in which a RAD24-dependent, 5′ to 3′ exonuclease moves from the telomere toward the centromere in cdc13-1 mutants. QAOS has been adapted, using degenerate tagging primers, to preferentially amplify all ssDNA sequences within samples that are primarily dsDNA. This approach may be useful for identifying ssDNA sequences associated with physiological or pathological states in other organisms.  相似文献   

4.
《Gene》1998,211(2):277-285
We describe a novel polymerase chain reaction (PCR)-based gene amplification method utilizing a circularizable oligodeoxyribonucleotide probe (C-probe). The C-probe contains two target complementary regions located at each terminus and an interposed generic PCR primer binding region. The hybridization of C-probe to a target brings two termini in direct apposition as the complementary regions of C-probe wind around the target to form a double helix. Subsequent ligation of the two termini results in a covalently linked C-probe that becomes `locked on to' the target. The circular nature of the C-probe allows for the generation of a multimeric single-stranded DNA (ssDNA) via extension of the antisense primer by Taq DNA polymerase along the C-probe and displacement of downstream strand, analogous to `rolling circle' replication of bacteriophage in vivo. This multimeric ssDNA then serves as a template for multiple sense primers to hybridize, extend, and displace downstream DNA, generating a large ramified (branching) DNA complex. Subsequent thermocycling denatures the dsDNA and initiates the next round of primer extension and ramification. This model results in significantly improved amplification kinetics (super-exponential) as compared to conventional PCR. Our results show that the C-probe was 1000 times more sensitive than the corresponding linear hemiprobes for detecting Epstein–Barr virus early RNA. The C-probe not only increases the power of amplification but also offers a means for decontaminating carryover amplicons. As the ligated C-probes possess no free termini, they are resistant to exonuclease digestion, whereas contaminated linear amplicons are susceptible to digestion. Treatment of the ligation reaction mixture with exonuclease prior to amplification eliminated the amplicon contaminant, which could also have been co-amplified with the same PCR primers; only the ligated C-probes were amplified. The combined advantages of the C-probe and thermocycling have a broad applicability for the detection of both DNA and RNA. Finally, we described a novel isothermal amplification method, ramification extension amplification, utilizing circular nature of C-probe and displacement activity of DNA polymerase.  相似文献   

5.
为筛选和建立风沙土中总DNA的提取和纯化方法,选取了5种直接提取法、1种间接提取法和2种纯化法分别对风沙土中总DNA进行了提取和纯化,并对其质量和产量进行了比较.结果表明:6种方法均可从风沙土中提取到大小为23 kb左右的总DNA,其中改进后的高盐提取法(用40%聚乙二醇8000和4 mol·L-1 NaCl沉淀DNA)效果最好,纯化后总DNA的纯度最高,可进行16S rDNA的PCR扩增,且产量仅稍低于试剂盒提取法;电泳加柱回收纯化法的纯化效果较好,经该方法纯化后的总DNA大部分可进行PCR扩增,可满足后续分子操作对DNA纯度的要求.  相似文献   

6.
Staphylococcus aureus are potent human pathogens possessing arsenal of virulence factors. Staphylococcal food poisoning (SFP) and respiratory infections mediated by staphylococcal enterotoxin B (SEB) are common clinical manifestations. Many diagnostic techniques are based on serological detection and quantification of SEB in different food and clinical samples. Aptamers are known as new therapeutic and detection tools which are available in different ssDNA, dsDNA and protein structures. In this study, we used a new set of ssDNA aptamers against SEB. The methods used included preparation of a dsDNA library using standard SEB protein as the target analyte, affinity chromatography matrix in microfuge tubes, SELEX procedures to isolate specific ssDNA‐aptamer as an affinity ligand, aptamer purification using ethanol precipitation method, affinity binding assay using ELISA, aptamer cloning and specificity test. Among 12 readable sequences, three of them were selected as the most appropriate aptamer because of their affinity and specificity to SEB. This study presents a new set of ssDNA aptamer with favorable selectivity to SEB through 12 rounds of SELEX. Selected aptamers were used to detect SEB in infected serum samples. Results showed that SEB c1 aptamer (2 µg SEB/100 nM aptamer) had favorable specificity to SEB (kd = 2.3 × 10?11). In conclusion, aptamers can be considered as useful tools for detecting and evaluating SEB. The results showed that affinity chromatography was an affordable assay with acceptable accuracy to isolate sensitive and selective novel aptamers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
To identify DNA aptamers demonstrating binding specificity for Shigella dysenteriae, a whole-bacterium Systemic Evolution of Ligands by Exponential enrichment (SELEX) method was applied to a combinatorial library of single-stranded DNA (ssDNA) molecules. After several rounds of selection using S. dysenteriae as the target, the highly enriched oligonucleotide pool was sequenced and then grouped into different families based on primary sequence homologies and similarities in the secondary structures. Aptamer S 1, which showed particularly high binding affinity in preliminary studies, was chosen for further characterisation. This aptamer displayed a dissociation constant (Kd value) of 23.47 ± 2.48 nM. Binding assays to assess the specificity of aptamer S 1 showed high binding affinity for S. dysenteriae and low apparent binding affinity for other bacteria. The ssDNA aptamers generated may serve as a new type of molecular probe for microbial pathogens, as it has the potential to overcome the tedious isolation and purification requirements for complex targets.  相似文献   

8.
The Escherichia coli PriA helicase complex with the double-stranded DNA (dsDNA), the location of the strong DNA-binding subsite, and the effect of the nucleotide cofactors, bound to the strong and weak nucleotide-binding site of the enzyme on the dsDNA affinity, have been analyzed using the fluorescence titration, analytical ultracentrifugation, and photo-cross-linking techniques. The total site size of the PriA-dsDNA complex is only 5 ± 1 bp, that is, dramatically lower than 20 ± 3 nucleotides occluded in the enzyme-single-stranded DNA (ssDNA) complex. The helicase associates with the dsDNA using its strong ssDNA-binding subsite in an orientation very different from the complex with the ssDNA. The strong DNA-binding subsite of the enzyme is located on the helicase domain of the PriA protein. The dsDNA intrinsic affinity is considerably higher than the ssDNA affinity and the binding process is accompanied by a significant positive cooperativity. Association of cofactors with strong and weak nucleotide-binding sites of the protein profoundly affects the intrinsic affinity and the cooperativity, without affecting the stoichiometry. ATP analog binding to either site diminishes the intrinsic affinity but preserves the cooperativity. ADP binding to the strong site leads to a dramatic increase of the cooperativity and only slightly affects the affinity, while saturation of both sites with ADP strongly increases the affinity and eliminates the cooperativity. Thus, the coordinated action of both nucleotide-binding sites on the PriA-dsDNA interactions depends on the structure of the phosphate group. The significance of these results for the enzyme activities in recognizing primosome assembly sites or the ssDNA gaps is discussed.  相似文献   

9.
Streptomyces coelicolor A3(2) produces several intra and extracellular enzymes with deoxyribonuclease activities. The examined N-terminal amino acid sequence of one of extracellular DNAases (TVTSVNVNGLL) and database search on S. coelicolor genome showed a significant homology to the putative secreted exodeoxyribonuclease. The corresponding gene (exoSc) was amplified, cloned, expressed in Escherichia coli, purified to homogeneity and characterized. Exonuclease recExoSc degraded chromosomal, linear dsDNA with 3′-overhang ends, linear ssDNA and did not digest linear dsDNA with blunt ends, supercoiled plasmid ds nor ssDNA. The substrate specificity of recExoSc was in the order of dsDNA > ssDNA > 3′-dAMP. The purified recExoSc was not a metalloprotein and exhibited neither phosphodiesterase nor RNase activity. It acted as 3′-phosphomonoesterase only at 3′-dAMP as a substrate. The optimal temperature for its activity was 57 °C in Tris–HCl buffer at optimal pH = 7.5 for either ssDNA or dsDNA substrates. It required a divalent cation (Mg2+, Co2+, Ca2+) and its activity was strongly inhibited in the presence of Zn2+, Hg2+, chelating agents or iodoacetate.  相似文献   

10.
Members of the DnaQ superfamily are major 3′–5′ exonucleases that degrade either only single-stranded DNA (ssDNA) or both ssDNA and double-stranded DNA (dsDNA). However, the mechanism by which dsDNA is recognized and digested remains unclear. Exonuclease X (ExoX) is a distributive DnaQ exonuclease that cleaves both ssDNA and dsDNA substrates. Here, we report the crystal structures of Escherichia coli ExoX in complex with three different dsDNA substrates: 3′ overhanging dsDNA, blunt-ended dsDNA and 3′ recessed mismatch-containing dsDNA. In these structures, ExoX binds to dsDNA via both a conserved substrate strand-interacting site and a previously uncharacterized complementary strand-interacting motif. When ExoX complexes with blunt-ended dsDNA or 5′ overhanging dsDNA, a ‘wedge’ composed of Leu12 and Gln13 penetrates between the first two base pairs to break the 3′ terminal base pair and facilitates precise feeding of the 3′ terminus of the substrate strand into the ExoX cleavage active site. Site-directed mutagenesis showed that the complementary strand-binding site and the wedge of ExoX are dsDNA specific. Together with the results of structural comparisons, our data support a mechanism by which normal and mismatched dsDNA are recognized and digested by E. coli ExoX. The crystal structures also provide insight into the structural framework of the different substrate specificities of the DnaQ family members.  相似文献   

11.

Background

SXT is an integrating conjugative element (ICE) originally isolated from Vibrio cholerae, the bacterial pathogen that causes cholera. It houses multiple antibiotic and heavy metal resistance genes on its ca. 100 kb circular double stranded DNA (dsDNA) genome, and functions as an effective vehicle for the horizontal transfer of resistance genes within susceptible bacterial populations. Here, we characterize the activities of an alkaline exonuclease (S066, SXT-Exo) and single strand annealing protein (S065, SXT-Bet) encoded on the SXT genetic element, which share significant sequence homology with Exo and Bet from bacteriophage lambda, respectively.

Results

SXT-Exo has the ability to degrade both linear dsDNA and single stranded DNA (ssDNA) molecules, but has no detectable endonuclease or nicking activities. Adopting a stable trimeric arrangement in solution, the exonuclease activities of SXT-Exo are optimal at pH 8.2 and essentially require Mn2+ or Mg2+ ions. Similar to lambda-Exo, SXT-Exo hydrolyzes dsDNA with 5'- to 3'-polarity in a highly processive manner, and digests DNA substrates with 5'-phosphorylated termini significantly more effectively than those lacking 5'-phosphate groups. Notably, the dsDNA exonuclease activities of both SXT-Exo and lambda-Exo are stimulated by the addition of lambda-Bet, SXT-Bet or a single strand DNA binding protein encoded on the SXT genetic element (S064, SXT-Ssb). When co-expressed in E. coli cells, SXT-Bet and SXT-Exo mediate homologous recombination between a PCR-generated dsDNA fragment and the chromosome, analogous to RecET and lambda-Bet/Exo.

Conclusions

The activities of the SXT-Exo protein are consistent with it having the ability to resect the ends of linearized dsDNA molecules, forming partially ssDNA substrates for the partnering SXT-Bet single strand annealing protein. As such, SXT-Exo and SXT-Bet may function together to repair or process SXT genetic elements within infected V. cholerae cells, through facilitating homologous DNA recombination events. The results presented here significantly extend our general understanding of the properties and activities of alkaline exonuclease and single strand annealing proteins of viral/bacteriophage origin, and will assist the rational development of bacterial recombineering systems.  相似文献   

12.
We report a universal fluorescent aptasensor based on the AccuBlue dye, which is impermeant to cell membranes, for the detection of pathogenic bacteria. The sensor consists of AccuBlue, an aptamer strand, and its complementary strand (cDNA) that partially hybridizes to the aptamer strand. We have fabricated two models by changing the sequence of the reaction between the elements in the system. One is the “signal on” model in which the aptamer is first bound to the target, followed by the addition of cDNA and AccuBlue, at which time the cDNA hybridizes with the free unreacted aptamer and forms a double-stranded DNA (dsDNA) duplex. Such hybridization causes AccuBlue to insert into the dsDNA and exhibit significantly increased fluorescence intensity because of the specific intercalation of the AccuBlue into dsDNA rather than single-stranded DNA (ssDNA). The other model, “signal off,” involves hybridization of the aptamer with cDNA first, resulting in high fluorescence intensity on the addition of AccuBlue. When the target is added, the aptamer binds the target, causing the cDNA to detach from the dsDNA duplex and resulting in low fluorescence as a result of the liberation of AccuBlue. Because this design is based purely on DNA hybridization, and AccuBlue is impermeant to cell membranes, it could potentially be adapted to a wide variety of analytes.  相似文献   

13.
Interaction of dimeric intercalating dyes with single-stranded DNA.   总被引:5,自引:2,他引:3       下载免费PDF全文
The unsymmetrical cyanine dye thiazole orange homodimer (TOTO) binds to single-stranded DNA (ssDNA, M13mp18 ssDNA) to form a fluorescent complex that is stable under the standard conditions of electrophoresis. The stability of this complex is indistinguishable from that of the corresponding complex of TOTO with double-stranded DNA (dsDNA). To examine if TOTO exhibits any binding preference for dsDNA or ssDNA, transfer of TOTO from pre-labeled complexes to excess unlabeled DNA was assayed by gel electrophoresis. Transfer of TOTO from M13 ssDNA to unlabeled dsDNA proceeds to the same extent as that from M13 dsDNA to unlabeled dsDNA. A substantial amount of the dye is retained by both the M13 ssDNA and M13 dsDNA even when the competing dsDNA is present at a 600-fold weight excess; for both dsDNA and ssDNA, the pre-labeled complex retains approximately one TOTO per 30 bp (dsDNA) or bases (ssDNA). Rapid transfer of dye from both dsDNA and ssDNA complexes is seen at Na+ concentrations > 50 mM. Interestingly, at higher Na+ or Mg2+ concentrations, the M13 ssDNA-TOTO complex appears to be more stable to intrinsic dissociation (dissociation in the absence of competing DNA) than the complex between TOTO and M13 dsDNA. Similar results were obtained with the structurally unrelated dye ethidium homodimer. The dsDNA- and ssDNA-TOTO complexes were further examined by absorption, fluorescence and circular dichroism spectroscopy. The surprising conclusion is that polycationic dyes, such as TOTO and EthD, capable of bis-intercalation, interact with dsDNA and ssDNA with very similar high affinity.  相似文献   

14.
The purpose of this study was to identify biotinylated single-stranded (ss) DNA aptamers with binding specificity to Listeria and use these for capture and subsequent qPCR detection of the organism. For aptamer selection, SELEX (systematic evolution of ligands by exponential enrichment) was applied to a biotin-labeled ssDNA combinatorial library. After multiple rounds of selection and counter-selection, aptamers separated, sequenced, and characterized by flow cytometry showed binding affinities to L. monocytogenes of 18–23%. Although selected for using L. monocytogenes, these aptamers showed similar binding affinity for other members of the Listeria genus and low binding affinity for non-Listeria species. One aptamer, Lbi-17, was chosen for development of a prototype capture and detection assay. When Lbi-17 was conjugated to magnetic beads and used in a combined aptamer magnetic capture (AMC)-qPCR assay, the pathogen could be detected at concentrations <60 CFU/500 μl buffer in the presence of a heterogeneous cocktail of non-Listeria bacterial cells, with a capture efficiency of 26–77%. Parallel experiments using immunomagnetic separation (IMS)-qPCR produced the same detection limit but lower capture efficiency (16–21%). Increasing assay volume to 10 and 50 ml resulted in reduced capture efficiency and higher limits of detection, at 2.7 and 4.8 log10 CFU L. monocytogenes per sample, respectively, for the AMC-qPCR assay. Biotinylated ssDNA aptamers are promising ligands for food-borne pathogen concentration prior to detection using molecular methods.  相似文献   

15.
Escherichia coli endonuclease I and exonuclease VII appear to recognize sequence-dependent conformations in the ssDNA backbone. ssDNAs, containing either A- and/or T-tract or a CAP binding region, were digested with these nucleases under conditions which minimize the formation of secondary structures. The digestion patterns were examined in relation to previous results of biochemical and crystallographic studies on dsDNA, and showed broad agreement. Endonuclease I cleaved ssDNA at sites corresponding to bent sites in dsDNA.  相似文献   

16.
The tightly packaged double-stranded DNA (dsDNA) genome in the mature particles of many tailed bacteriophages has been shown to form multiple concentric rings when reconstructed from cryo-electron micrographs. However, recent single-particle DNA packaging force measurements have suggested that incompletely packaged DNA (ipDNA) is less ordered when it is shorter than ∼ 25% of the full genome length. The study presented here initially achieves both the isolation and the ipDNA length-based fractionation of ipDNA-containing T3 phage capsids (ipDNA-capsids) produced by DNA packaging in vivo; some ipDNA has quantized lengths, as judged by high-resolution gel electrophoresis of expelled DNA. This is the first isolation of such particles among the tailed dsDNA bacteriophages. The ipDNA-capsids are a minor component (containing ∼ 10− 4 of packaged DNA in all particles) and are initially detected by nondenaturing gel electrophoresis after partial purification by buoyant density centrifugation. The primary contaminants are aggregates of phage particles and empty capsids. This study then investigates ipDNA conformations by the first cryo-electron microscopy of ipDNA-capsids produced in vivo. The 3-D structures of DNA-free capsids, ipDNA-capsids with various lengths of ipDNA, and mature bacteriophage are reconstructed, which reveals the typical T = 7l icosahedral shell of many tailed dsDNA bacteriophages. Though the icosahedral shell structures of these capsids are indistinguishable at the current resolution for the protein shell (∼ 15 Å), the conformations of the DNA inside the shell are drastically different. T3 ipDNA-capsids with 10.6 kb or shorter dsDNA (< 28% of total genome) have an ipDNA conformation indistinguishable from random. However, T3 ipDNA-capsids with 22 kb DNA (58% of total genome) form a single DNA ring next to the inner surface of the capsid shell. In contrast, dsDNA fully packaged (38.2 kb) in mature T3 phage particles forms multiple concentric rings such as those seen in other tailed dsDNA bacteriophages. The distance between the icosahedral shell and the outermost DNA ring decreases in the mature, fully packaged phage structure. These results suggest that, in the early stage of DNA packaging, the dsDNA genome is randomly distributed inside the capsid, not preferentially packaged against the inner surface of the capsid shell, and that the multiple concentric dsDNA rings seen later are the results of pressure-driven close-packing.  相似文献   

17.
In this study, we used native gradient-polyacrylamide gel electrophoresis and electroelution (NGGEE) to purify enzymatic proteins from Trichoderma koningii AS3.2774. With this method, we purified eight enzymatic proteins and classified them to the cellulase system by comparing secretions of T. koningii in inductive medium and in repressive medium. It resulted in 24-fold β-glucosidase (BG) purification with a recovery rate of 5.5%, and a specific activity of 994.6 IU mg− 1 protein. The final yield of BG reached 8 μg under purifying procedure of NGGEE. We also identified BG using the enzyme assay with thin-layer chromatography and MALDI-TOFMS. This BG had one subunit with a molecular mass of 69.1 kDa as determined by sodium dodecylsulfate-polyacrylamide gel electrophoresis. The hydrolytic activity of the BG had an optimal pH of 5.0, an optimal temperature of 50 °C, an isoelectric point of 5.68 and a Km for p-nitrophenyl-β-d-glucopyranoside of 2.67 mM. Taken together, we show that NGGEE is a reliable method through which μg grade of active proteins can be purified.  相似文献   

18.
Taq DNA聚合酶具有反应速度快、温度作用范围广及良好的续进性等特点,可视为一种理想的DNA顺序分析酶。本文首先对非对称性PCR扩增过程中单、双链DNA产物的积累情况进行了分析,然后采用标记延伸二步法,对Taq DNA聚合酶的性质及影响因素进行分析。为进一步改进Taq DNA聚合酶测序的方法,本反应建立了“Klenow-型”的直接掺入标记同位素测序法,即在反应液中加入与标记核苷酸相应的一定浓度的冷dNTP。此法不但解决了二步法中引物后部分DNA顺序无法读出的缺点,而且简化了反应步骤,亦能得到令人满意的顺序分析结果,每次可读出至少400碱基的序列。  相似文献   

19.
20.
Human herpesvirus-6A (HHV-6A) and HHV-6B integrate their genomes into the telomeres of human chromosomes, however, the mechanisms leading to integration remain unknown. HHV-6A/B encode a protein that has been proposed to be involved in integration termed U94, an ortholog of adeno-associated virus type 2 (AAV-2) Rep68 integrase. In this report, we addressed whether purified recombinant maltose-binding protein (MBP)-U94 fusion proteins of HHV-6A/B possess biological functions compatible with viral integration. We could demonstrate that MBP-U94 efficiently binds both dsDNA and ssDNA containing telomeric repeats using gel shift assay and surface plasmon resonance. MBP-U94 is also able to hydrolyze adenosine triphosphate (ATP) to ADP, providing the energy for further catalytic activities. In addition, U94 displays a 3′ to 5′ exonuclease activity on dsDNA with a preference for 3′-recessed ends. Once the DNA strand reaches 8–10 nt in length, the enzyme dissociates it from the complementary strand. Lastly, MBP-U94 compromises the integrity of a synthetic telomeric D-loop through exonuclease attack at the 3′ end of the invading strand. The preferential DNA binding of MBP-U94 to telomeric sequences, its ability to hydrolyze ATP and its exonuclease/helicase activities suggest that U94 possesses all functions required for HHV-6A/B chromosomal integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号