首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Flies transport specific bacteria with their larvae that provide a wider range of nutrients for those bacteria. Our hypothesis was that this symbiotic interaction may depend on interkingdom signaling. We obtained Proteus mirabilis from the salivary glands of the blow fly Lucilia sericata; this strain swarmed significantly and produced a strong odor that attracts blow flies. To identify the putative interkingdom signals for the bacterium and flies, we reasoned that as swarming is used by this bacterium to cover the food resource and requires bacterial signaling, the same bacterial signals used for swarming may be used to communicate with blow flies. Using transposon mutagenesis, we identified six novel genes for swarming (ureR, fis, hybG, zapB, fadE and PROSTU_03490), then, confirming our hypothesis, we discovered that fly attractants, lactic acid, phenol, NaOH, KOH and ammonia, restore swarming for cells with the swarming mutations. Hence, compounds produced by the bacterium that attract flies also are utilized for swarming. In addition, bacteria with the swarming mutation rfaL attracted fewer blow flies and reduced the number of eggs laid by the flies. Therefore, we have identified several interkingdom signals between P. mirabilis and blow flies.  相似文献   

3.
伤害信号分子及其信号转导   总被引:4,自引:1,他引:3  
伤害对于植物是一种常见的环境刺激。目前,对伤害刺激产生的防御反应及其机理都有了较为广泛的研究。简述了目前已确定的参与伤害反应的信号分子:寡糖素,系统素,脱落酸,茉莉酸,乙烯和电信号等,并初步探讨了伤害信号分子的信号转导途径。  相似文献   

4.
5.
6.
Peroxin 3 (Pex3p) has been identified and characterized as a peroxisomal membrane protein in yeasts and mammals. We identified two putative homologs in Arabidopsis (AtPex3p, forms 1 and 2), both with an identical cluster of positively charged amino acid residues (RKHRRK) immediately preceding one of the two predicted transmembrane domains (TMD1). In transiently transformed Arabidopsis and tobacco BY-2 suspension-cultured cells, epitope-tagged AtPex3p (form 2) sorted post-translationally from the cytosol directly to peroxisomes, the first sorting pathway described for any peroxin in plants. TMD1 and RKHRRK were necessary for targeting form 2 to peroxisomes and sufficient for directing chloramphenicol acetyltransferase to peroxisomes in both cell types. The N and C termini of AtPex3p (form 2) extend into the peroxisomal matrix, different from mammal and yeast Pex3 proteins. Thus, two authentic peroxisomal membrane-bound Pex3p homologs possessing a membrane peroxisomal targeting signal, the first one defined for a plant peroxin and for any Pex3p homolog, exist in plant cells.  相似文献   

7.
In many species, it is common for animals to have multiple signals within one channel of communication. Multiple signals may, however, be inefficient if they are redundant in nature. Identifying the functional significance of these multiple signals is therefore important if we are to understand the evolution of such elaborated behaviours. We proposed to identify the roles of movement-based multiple signals in a model animal system. Male fiddler crabs wave their sexually dimorphic enlarged claw during social interactions. Some species present multiple signals, where the level of complexity of the movement changes. Males of Austruca mjoebergi can perform a double wave consisting of a high- followed by a low-elevation lifting of the claw, or a single wave consisting of the high-elevation movement alone. We first investigated structural differences between the double and single wave types, and found that single waves were lower in elevation than double waves. We then explored the adaptive meaning of the wave types by manipulating the social context in which males wave. We found that double waves were given in all contexts and in higher proportions at long distances, suggesting a function of broadcasting male location. Single waves, on the other hand, were mainly given at close range and in the presence of conspecifics, suggesting intraspecific communication. Female presence elicited the highest number and proportion of single waves, a likely result of a female preference for higher wave rates. Finally, we point out that there is an element of interaction between wave types that deserves future attention. This paper is an important contribution to expand our understanding of the adaptive meaning of multiple visual signals and help reach a unified theory of their evolution.  相似文献   

8.
Environmental motion delays the detection of movement-based signals   总被引:1,自引:0,他引:1  
Animal signals are constrained by the environment in which they are transmitted and the sensory systems of receivers. Detection of movement-based signals is particularly challenging against the background of wind-blown plants. The Australian lizard Amphibolurus muricatus has recently been shown to compensate for greater plant motion by prolonging the introductory tail-flicking component of its movement-based display. Here I demonstrate that such modifications to signal structure are useful because environmental motion lengthens the time lizard receivers take to detect tail flicks. The spatio-temporal properties of animal signals and environmental motion are thus sufficiently similar to make signal detection more difficult. Environmental motion, therefore, must have had an influence on the evolution of movement-based signals and motion detection mechanisms.  相似文献   

9.
The formation of appropriate synaptic connections is critical for the proper functioning of the brain. Early in development, neurons form a surplus of immature synapses. To establish efficient, functional neural networks, neurons selectively stabilize active synapses and eliminate less active ones. This process is known as activity-dependent synapse refinement. Defects in this process have been implicated in neuropsychiatric disorders such as schizophrenia and autism. Here we review the manner and mechanisms by which synapse elimination is regulated through activity-dependent competition. We propose a theoretical framework for the molecular mechanisms of synapse refinement, in which three types of signals regulate the refinement. We then describe the identity of these signals and discuss how multiple molecular signals interact to achieve appropriate synapse refinement in the brain.  相似文献   

10.
CAMERON  M. A.; HANNAN  E. J. 《Biometrika》1979,66(2):243-258
  相似文献   

11.
The CMP-sialic acid synthetase (CSS) catalyzes the activation of sialic acid (Sia) to CMP-Sia which is a donor substrate of sialyltransferases. The vertebrate CSSs are usually localized in nucleus due to the nuclear localization signal (NLS) on the molecule. In this study, we first point out that a small, but significant population of the mouse CMP-sialic acid synthetase (mCSS) is also present in cytoplasm, though mostly in nucleus. As a mechanism for the localization in cytoplasm, we first identified two nuclear export signals (NESs) in mCSS, based on the localization studies of the potential NES-deleted mCSS mutants as well as the potential NES-tagged eGFP proteins. These two NESs are conserved among mammalian and fish CSSs, but not present in the bacterial or insect CSS. These results suggest that the intracellular localization of vertebrate CSSs is regulated by not only the NLS, but also the NES sequences.  相似文献   

12.
13.
The normal proto-oncogene c-fms encodes the macrophage growth factor (M-CSF) receptor involved in growth, survival, and differentiation along the monocyte-macrophage lineage of hematopoietic cell development. A major portion of our research concerns unraveling the temporal, molecular, and structural features that determine and regulate these events. Previous results indicated that c-fms can transmit a growth signal as well as a signal for differentiation in the appropriate cells. To investigate the role of the Fms tyrosine autophosphorylation sites in proliferation vs. differentiation signaling, four of these sites were disrupted and the mutant receptors expressed in a clone derived from the myeloid FDC-P1 cell line. These analyses revealed that: (1) none of the four autophosphorylation sites studied (Y697, Y706, Y721, and Y807) are essential for M-CSF-dependent proliferation of the FDC-P1 clone; (2) Y697, Y706, and Y721 sites, located in the kinase insert region of Fms, are not necessary for differentiation but their presence augments this process; and (3) the Y807 site is essential for the Fms differentiation signal: its mutation totally abrogates the differentiation of the FDC-P1 clone and conversely increases the rate of M-CSF-dependent proliferation. This suggests that the Y807 site may control a switch between growth and differentiation. The assignment of Y807 as a critical site for the reciprocal regulation of growth and differentiation may provide a paradigm for Fms involvement in leukemogenesis, and we are currently investigating the downstream signals transmitted by the tyrosine-phosphorylated 807 site. In Fms-expressing FDC-P1 cells, M-CSF stimulation results in the rapid (30 sec) tyrosine phosphorylation of Fms on the five cytoplasmic tyrosine autophosphorylation sites, and subsequent tyrosine phosphorylation of several host cell proteins occurs within 1–2 min. Complexes are formed between Fms and other signal transduction proteins such as Grb2, Shc, Sos1, and p85. In addition, a new signal transduction protein of 150 kDa is detectable in the FDC-P1 cells. The p150 is phosphorylated on tyrosine, and forms a complex with Shc and Grb2. The interaction with Shc occurs via a protein tyrosine binding (PTB) domain at the N-terminus of Shc. The p150 is not detectable in Fms signaling within fibroblasts, yet the PDGF receptor induces the tyrosine phosphorylation of a similarly sized protein. In hematopoietic cells, this protein is involved in signaling by receptors for GM-CSF, IL-3, KL, MPO, and EPO. We have now cloned a cDNA for this protein and found at least one related family member. The related family member is a Fanconia Anemia gene product, and this suggests potential ways the p150 protein may function in Fms signaling. Mol Reprod Dev 46:96–103, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
A major challenge in evolutionary biology is explaining the origins of complex phenotypic diversity. In animal communication, complex signals may evolve from simpler signals because novel signal elements exploit preexisting biases in receivers’ sensory systems. Investigating the shape of female preference functions for novel signal characteristics is a powerful, but underutilized, method to describe the adaptive landscape potentially guiding complex signal evolution. We measured female preference functions for characteristics of acoustic appendages added to male calling songs in the grasshopper Chorthippus biguttulus, which naturally produces only simple songs. We discovered both hidden preferences for and biases against novel complex songs, and identified rules governing song attractiveness based on multiple characteristics of both the base song and appendage. The appendage's temporal position and duration were especially important: long appendages preceding the song often made songs less attractive, while following appendages were neutral or weakly attractive. Appendages had stronger effects on songs of shorter duration, but did not restore the attractiveness of very unattractive songs. We conclude that sensory biases favor, within predictable limits, the evolution of complex songs in grasshoppers. The function‐valued approach is an important tool in determining the generality of these limits in other taxa and signaling modalities.  相似文献   

15.
16.
Pan1 is an actin patch-associated protein involved in endocytosis. Our studies revealed that in oleate-grown cells Pan1 is located in the nucleus as well as in patches. One of three putative nuclear localization signals (NLS) of Pan1, NLS2, directed beta-galactosidase (beta-gal) to the nucleus. However, GFP-Pan1(886-1219), containing NLS2, was found in the cytoplasm indicating that it may contain a nuclear export signal (NES). A putative Pan1 NES, overlapping with NLS3, re-addressed NLS(H2B)-NES/NLS3-beta-gal from the nucleus to the cytoplasm. Inactivation of the NES allowed NLS3 to be effective. Thus, Pan1 contains functional NLSs and a NES and appears to shuttle in certain circumstances.  相似文献   

17.
Given the diversity of animal signals, there has been recentinterest in categorizing signals into probable functions accordingto their properties. For example, models predict that signalsof quality should be costly and condition dependent, whereassignals of individual identity should be cheap and expressedindependently of condition. Here, we test these predictionsby comparing the condition dependence of signals of individualidentity and quality in Polistes wasps. Polistes fuscatus waspshave black and yellow patterns on the face and abdomen thatsignal individual identity, whereas Polistes dominulus waspshave black and yellow facial patterns that signal aspects ofquality related to dominance. We reared both species with andwithout supplemental food and examined the facial patterns ofthe resulting offspring. As predicted, food availability didnot influence the development of identity signals in P. fuscatus.In strong contrast, P. dominulus wasps reared with supplementalfood had facial patterns that signaled higher levels of qualitythan P. dominulus reared without supplemental food. Interestingly,the identity and quality signals have different condition dependence,despite being composed of similar pigments, suggesting thatsignal function has a stronger influence on signal propertiesthan pigmentation. Because body size is often correlated withquality signal elaboration, we also tested how food supplementationinfluenced offspring size. In both species, supplemented coloniesproduced smaller offspring than nonsupplemented colonies, suggestingthat queens may invest in producing fewer, larger offspringin stressful environments.  相似文献   

18.
19.
Contemporary animal signals may derive from an elaboration of existing forms or novel non-signalling traits. Unravelling the evolution of the latter is challenging because experiments investigating the maintenance of the signal may provide little insight into its early evolution. The web decorations, or stabilimenta of some orb web spiders represent an intriguing model system to investigate novel animal signals. For over 100 years, biologists have struggled to explain why spiders decorate their webs with additional threads of silk, producing a conspicuous signal on a construction whose function is to entangle unsuspecting prey. The numerous explanations for the maintenance of this behaviour starkly contrast with the absence of a plausible explanation for its evolutionary origin. Our review highlights the difficulties in resolving both the evolution and maintenance of animal signalling, and inferring the causative arrow-even from experimental studies. Drawing on recent research that focuses on physiological processes, we provide a model of the evolutionary progression of web-decorating behaviour.  相似文献   

20.
Forces measured in human joints vary considerably when an activity such as walking is carried out by different subjects or when it is repeated. ‘Typical’ standardised force–time patterns are needed to test and improve joint implants. Mechanically most important for their endurance are the magnitudes and times of force maxima and minima. They should equal the arithmetic means from the single measurements. Similar problems exist when evaluating other strongly varying signals, as in gait analysis. The new method to calculate typical signals (TSs) enhances existing dynamic time warping (DTW) procedures. It allows us to combine any number of signals. The sequence of input signals – used for calculating the TS – has only a minor influence. The accuracy of the method was tested numerically on signals for which the typical patterns could be defined exactly, and also on real joint forces that varied to different extents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号