首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phage display of combinatorial antibody libraries is a versatile tool in the field of antibody engineering, with diverse applications including monoclonal antibody (mAb) discovery, affinity maturation, and humanization. To improve the selection efficiency of antibody libraries, we developed a new phagemid display system that addresses the complication of bald phage propagation. The phagemid facilitates the biotinylation of fragment of antigen binding (Fab) antibody fragments displayed on phage via Sortase A catalysis and the subsequent enrichment of Fab-displaying phage during selections. In multiple contexts, this selection approach improved the enrichment of target-reactive mAbs by depleting background phage. Panels of cancer cell line-reactive mAbs with high diversity and specificity were isolated from a naïve chimeric rabbit/human Fab library using this approach, highlighting its potential to accelerate antibody engineering efforts and to empower concerted antibody drug and target discovery.  相似文献   

2.
The display of proteins on the surface of phage offers a powerful means of selecting for rare genes encoding proteins with binding activities. Recently we found that antibody heavy and light chain variable (V) domains fused as a single polypeptide chain to a minor coat protein of filamentous phage fd, could be enriched by successive rounds of phage growth and panning with antigen. This allows the selection of antigen-binding domains directly from diverse libraries of V-genes. Now we show that heterodimeric Fab fragments can be assembled on the surface of the phage by linking one chain to the phage coat protein, and secreting the other into the bacterial periplasm. Furthermore by introducing an amber mutation between the antibody chain and the coat protein, we can either display the antibody on phage using supE strains of bacteria, or produce soluble Fab fragment using non-suppressor strains. The use of Fab fragments may offer advantages over single chain Fv fragments for construction of combinatorial libraries.  相似文献   

3.
Ultra-small colloidal gold (less than 1 nm), bound to Fab fragments provides the shortest practical specific marker system to date and can be used in concert with field emission scanning electron microscopes to precisely locate antigenic sites. An "in-lens" FE-SEM equipped with a highly sensitive single crystal YAG-detector for backscattered electrons, as well as the use of advanced specimen preparation techniques based on cryofixation, are among the indispensible prerequisites. A T-even type Escherichia coli bacteriophage, Tu II*-46, was chosen to study properties of the immunogold labeling system. Distinct regions on the tail fibers of this phage were labeled with Fab fragments derived from antibodies against the related phage Tu II*-6. The tail fibers are composed of pairs of homologous proteins, thus offering two identical antigenic sites at the same locus on the tail fibers. Fab fragments can be visualized in the SEM at high accelerating voltage (30 kV) without any additional marker. This permits comparison of the labeling characteristics of unmarked and colloidal gold-marked Fab fragments. Unmarked Fab fragments often bind by pairs (two singlet Fab fragments bound opposed to each other along the axis of the tail fiber). The labeling efficiency of unmarked Fab fragments was greater than that of ultra-small gold-labeled Fab fragments. Binding by pairs was not seen after labeling with ultra-small gold-Fab fragments. The conjugates used in this study exhibited one colloidal gold per Fab fragment.  相似文献   

4.
Efficient display of antibody on filamentous phage M13 coat is crucial for successful biopanning selections. We applied a directed evolution strategy to improve the oligovalent display of a poorly behaving Fab fragment fused to phage gene-3 for minor coat protein (g3p). The Fab displaying clones were enriched from a randomly mutated Fab gene library with polyclonal anti-mouse IgG antibodies. Contribution of each mutation to the improved phenotype of one selected mutant was studied. It was found out that two point mutations had significant contribution to the display efficiency of Fab clones superinfected with hyperphage. The most dramatic effect was connected to a start codon mutation, from AUG to GUG, of the PelB signal sequence preceding the heavy chain. The clone carrying this mutation, FabMGUG, displayed Fab 19-fold better and yielded twofold higher phage titers than the original Fab.  相似文献   

5.
A method was developed to rapidly identify high-affinity human antibodies from phage display library selection outputs. It combines high-throughput Fab fragment expression and purification with surface plasmon resonance (SPR) microarrays to determine kinetic constants (kon and koff) for 96 different Fab fragments in a single experiment. Fabs against human tissue kallikrein 1 (hK1, KLK1 gene product) were discovered by phage display, expressed in Escherichia coli in batches of 96, and purified using protein A PhyTip columns. Kinetic constants were obtained for 191 unique anti-hK1 Fabs using the Flexchip SPR microarray device. The highest affinity Fabs discovered had dissociation constants of less than 1 nM. The described SPR method was also used to categorize Fabs according to their ability to recognize an apparent active site epitope. The ability to rapidly determine the affinities of hundreds of antibodies significantly accelerates the discovery of high-affinity antibody leads.  相似文献   

6.
Co-crystallization of membrane proteins with antibody fragments may emerge as a general tool to facilitate crystal growth and improve crystal quality. The bound antibody fragment enlarges the hydrophilic part of the mostly hydrophobic membrane protein, thereby increasing the interaction area for possible protein-protein contacts in the crystal. Additionally, it may restrain flexible parts or lock the membrane protein in a defined conformational state. For successful co-crystallization trials, the antibody fragments must be stable in detergents during the extended period of crystal growth and must be easily produced in amounts necessary for crystallography. Therefore, we constructed a library of antibody Fab fragments from a framework subset of the HuCAL GOLD library (Morphosys, Munich, Germany). By combining the most stable and well expressed frameworks, V(H)3 and V(kappa)3, with the further stabilizing constant domains, a Fab library with the desired properties was obtained in a standard phage display format. As a proof of principle, we selected binders with phage display against the detergent-solubilized citrate transporter CitS of Klebsiella pneumoniae. We describe efficient methods for the immobilization of the membrane protein during selection, for ELISA screening, and for BIAcore evaluation. We demonstrate that the selected Fab fragments form stable complexes with native CitS and recognize conformational epitopes with affinities in the low nanomolar range.  相似文献   

7.
8.
In vitro display methods are superior tools for obtaining monoclonal antibodies. Although totally in vitro display methods, such as ribosome display and mRNA display, have the advantages of larger library sizes and quicker selection procedures compared with phage display, their applications have been limited to single-chain Fvs due to the requirement for linking of the mRNA and the nascent protein on the ribosome. Here we describe a different type of totally in vitro method, DNA display, that is applicable to heterodimeric Fab fragments: in vitro compartmentalization in water-in-oil emulsions allows the linking of an oligomeric protein and its encoding DNA with multiple ORFs. Since previously used emulsions impaired the synthesis of functional Fab fragments, we modified conditions for preparing emulsions, and identified conditions under which it was possible to enrich Fab fragments 106-fold per three rounds of affinity selection. Furthermore, we confirmed that genes encoding stable Fab fragments could be selected from a Fab fragment library with a randomized hydrophobic core in the constant region by applying heat treatment as a selection pressure. Since this method has all advantages of both phage display and totally in vitro display, it represents a new option for many applications using display methods.  相似文献   

9.
The so-called ‘in vitro evolutionary method’ using a phage display system has been applied for protein engineering of the antigen-binding fragment of antibodies (Fab) by conducting random mutagenesis at the antigen-binding site in combination with antigen-based biopanning. However, isolated phage clones displaying Fab cannot necessarily be used for efficient bacterial production of engineered Fab proteins, often due to deleterious defects in their proper folding abilities derived in compensation for the gain of high affinity for a particular antigen. We here report a new method of an efficient and direct bacterial expression system for the phagemid-coded Fab proteins without use of the helper phage. To overcome a low folding efficiency derived from somatic hypermutations, if any, we have established optimum conditions for bacterial cultivation and protein expression, utilizing unusually long cultivation time (>50 h) and very low temperature (25 °C) and thereby leading to the production and extracellular secretion of Fab proteins in a very high yield (3–15 mg/L of culture). The purified Fab folded correctly and could efficiently bind an antigen, as judged by circular dichroism and isothermal titration calorimetry, respectively.  相似文献   

10.
《MABS-AUSTIN》2013,5(1):204-218
Today, most approved therapeutic antibodies are provided as immunoglobulin G (IgG), whereas small recombinant antibody formats are required for in vitro antibody generation and engineering during drug development. Particularly, single chain (sc) antibody fragments like scFv or scFab are well suited for phage display and bacterial expression, but some have been found to lose affinity during conversion into IgG.

In this study, we compared the influence of the antibody format on affinity maturation of the CD30-specific scFv antibody fragment SH313-F9, with the overall objective being improvement of the IgG. The variable genes of SH313-F9 were randomly mutated and then cloned into libraries encoding different recombinant antibody formats, including scFv, Fab, scFabΔC, and FabΔC. All tested antibody formats except Fab allowed functional phage display of the parental antibody SH313-F9, and the corresponding mutated antibody gene libraries allowed isolation of candidates with enhanced CD30 binding. Moreover, scFv and scFabΔC antibody variants retained improved antigen binding after subcloning into the single gene encoded IgG-like formats scFv-Fc or scIgG, but lost affinity after conversion into IgGs. Only affinity maturation using the Fab-like FabΔC format, which does not contain the carboxy terminal cysteines, allowed successful selection of molecules with improved binding that was retained after conversion to IgG. Thus, affinity maturation of IgGs is dependent on the antibody format employed for selection and screening. In this study, only FabΔC resulted in the efficient selection of IgG candidates with higher affinity by combination of Fab-like conformation and improved phage display compared with Fab.  相似文献   

11.
人源单克隆抗人免疫缺陷病毒1型抗体Fab段基因的获得   总被引:1,自引:0,他引:1  
应用噬苏体抗体库技术有效地筛选出了多株抗HIV-1人源单克隆抗体。以逆转录聚合酶链反应(RT-PCR)从HIV-1感染者外周血淋巴细胞中扩增抗体轻重链可变区基因,插入载体pCOMB3,建立噬菌体抗体库。分别以HIV-1gp120和gp160为固相抗原,经过多轮筛选,从中获得了多株抗HIV-1gp41、gp120和gp160的单克隆抗体Fab段基因。抗HIV特异性噬菌体抗体随抗体库的筛选高度富集,抗  相似文献   

12.
13.
Bacterial expression and purification of recombinant bovine Fab fragments.   总被引:1,自引:0,他引:1  
We have previously described a recombinant phagemid expression vector, pComBov, designed for the production of native sequence bovine monoclonal antibodies (mAb) generated by antibody phage display. Bovine mAb Fab fragments isolated from libraries constructed using pComBov in Escherichia coli strain XL1-Blue, which is routinely used for antibodies expressed on the surface of phage, were expressed at very low yields. Therefore, a study was undertaken to determine optimal growth conditions for maximal expression of bovine Fab fragments in E. coli. By varying the E. coli strain, and the temperature and length of the culture growth, we were able to substantially increase the yield of soluble Fab fragments. A high yield of Fab fragments was found in the culture growth medium, which enabled us to devise a rapid and simple single-step method for the purification of native (nondenatured) Fabs based on immobilized metal affinity chromatography against a six-histidine amino acid carboxyl-terminal extension of the heavy-chain constant region. Using these methods we were able to express and purify antigen-specific bovine Fab fragments from E. coli.  相似文献   

14.

Background  

The connection of the variable part of the heavy chain (VH) and and the variable part of the light chain (VL) by a peptide linker to form a consecutive polypeptide chain (single chain antibody, scFv) was a breakthrough for the functional production of antibody fragments in Escherichia coli. Being double the size of fragment variable (Fv) fragments and requiring assembly of two independent polypeptide chains, functional Fab fragments are usually produced with significantly lower yields in E. coli. An antibody design combining stability and assay compatibility of the fragment antigen binding (Fab) with high level bacterial expression of single chain Fv fragments would be desirable. The desired antibody fragment should be both suitable for expression as soluble antibody in E. coli and antibody phage display.  相似文献   

15.
人源中和性抗汉滩病毒单克隆抗体Fab段基因的获得和表达   总被引:15,自引:5,他引:10  
梁米芳  李德新 《病毒学报》1997,13(4):297-308
运用噬菌体表面表达技术,获得人源和中性抗滩滩病毒汉滩型G1基因工程单克隆抗体Fab段基因及其表达,并同时获得抗汉滩病毒核蛋白的Fab抗体。从能综合征出血热疫区恢复期病人抗凝血中分离到的外周淋巴细胞中,提取了部细胞RNA。通过RT-PCR方法,用一组人IgG Fab基因特异性引物,从合成了cDNA中经PCR扩增了一组轻链和重链Fab段基因,将轻链和重链先后插入噬菌体载体pComb3,dnalf vf  相似文献   

16.
A helper phage to improve single-chain antibody presentation in phage display   总被引:11,自引:0,他引:11  
We show here that the number of single-chain antibody fragments (scFv) presented on filamentous phage particles generated with antibody display phagemids can be increased by more than two orders of magnitude by using a newly developed helper phage (hyperphage). Hyperphage have a wild-type pIII phenotype and are therefore able to infect F(+) Escherichia coli cells with high efficiency; however, their lack of a functional pIII gene means that the phagemid-encoded pIII-antibody fusion is the sole source of pIII in phage assembly. This results in an considerable increase in the fraction of phage particles carrying an antibody fragment on their surface. Antigen-binding activity was increased about 400-fold by enforced oligovalent antibody display on every phage particle. When used for packaging a universal human scFv library, hyperphage improved the specific enrichment factor obtained when panning on tetanus toxin. After two panning rounds, more than 50% of the phage were found to bind to the antigen, compared to 3% when conventional M13KO7 helper phage was used. Thus, hyperphage is particularly useful in stoichiometric situations, when there is little chance that a single phage will locate the desired antigen.  相似文献   

17.
Eliminating helper phage from phage display   总被引:1,自引:0,他引:1       下载免费PDF全文
Phage display technology involves the display of proteins or peptides, as coat protein fusions, on the surface of a phage or phagemid particles. Using standard technology, helper phage are essential for the replication and assembly of phagemid particles, during library production and biopanning. We have eliminated the need to add helper phage by using 'bacterial packaging cell lines' that provide the same functions. These cell lines contain M13-based helper plasmids that express phage packaging proteins which assemble phagemid particles as efficiently as helper phage, but without helper phage contamination. This results in genetically pure phagemid particle preparations. Furthermore, by using constructs differing in the form of gene 3 that they contain, we have shown that the display, from a single library, can be modulated between monovalent (phagemid-like) and multivalent display (phage-like) without any further engineering. These packaging cells eliminate the use of helper phage from phagemid-based selection protocols; reducing the amount of technical preparation, facilitating automation, optimizing selections by matching display levels to diversity, and effectively using the packaged phagemid particles as means to transfer genetic information at an efficiency approaching 100%.  相似文献   

18.
On the influence of vector design on antibody phage display   总被引:2,自引:0,他引:2  
Phage display technology is an established technology particularly useful for the generation of monoclonal antibodies (mAbs). The isolation of phagemid-encoded mAb fragments depends on several features of a phage preparation. The aims of this study were to optimize phage display vectors, and to ascertain if different virion features can be optimized independently of each other. Comparisons were made between phagemid virions assembled by g3p-deficient helper phage, Hyperphage, Ex-phage or Phaberge, or corresponding g3p-sufficient helper phage, M13K07. All g3p-deficient helper phage provided a similar level of antibody display, significantly higher than that of M13K07. Hyperphage packaged virions at least 100-fold more efficiently than did Ex-phage or Phaberge. Phaberge's packaging efficiency improved by using a SupE strain. Different phagemids were also compared. Removal of a 56 base pair fragment from the promoter region resulted in increased display level and increased virion production. This critical fragment encodes a lacZ'-like peptide and is also present in other commonly used phagemids. Increasing display level did not show statistical correlation with phage production, phage infectivity or bacterial growth rate. However, phage production was positively correlated to phage infectivity. In summary, this study demonstrates simultaneously optimization of multiple and independent features of importance for phage selection.  相似文献   

19.
20.
A highly selective, high affinity recombinant anti-testosterone Fab fragment has been generated by stepwise optimization of the complementarity-determining regions (CDRs) by random mutagenesis and phage display selection of a monoclonal antibody (3-C(4)F(5)). The best mutant (77 Fab) was obtained by evaluating the additivity effects of different independently selected CDR mutations. The 77 Fab contains 20 mutations and has about 40-fold increased affinity (K(d) = 3 x 10(-10) m) when compared with the wild-type (3-C(4)F(5)) Fab. To obtain structural insight into factors, which are needed to improve binding properties, we have determined the crystal structures of the mutant 77 Fab fragment with (2.15 A) and without testosterone (2.10 A) and compared these with previously determined wild-type structures. The overall testosterone binding of the 77 Fab is similar to that of the wild-type. The improved affinity and specificity of the 77 Fab fragment are due to more comprehensive packing of the testosterone with the protein, which is the result of small structural changes within the variable domains. Only one important binding site residue Glu-95 of the heavy chain CDR3 is mutated to alanine in the 77 Fab fragment. This mutation, originally selected from the phage library based on improved specificity, provides more free space for the testosterone D-ring. The light chain CDR1 of 77 Fab containing eight mutations has the most significant effect on the improved affinity, although it has no direct contact with the testosterone. The mutations of CDR-L1 cause a rearrangement in its conformation, leading to an overall fine reshaping of the binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号