首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Urinary tract infections (UTIs) are one of the most common bacterial infections and are predominantly caused by uropathogenic Escherichia coli (UPEC). E. coli strains belonging to 14 serogroups, including O1, O2, O4, O6, O7, O8, O15, O16, O18, O21, O22, O25, O75 and O83, are the most frequently detected UPEC strains in a diverse range of clinical urine specimens. In the current study, the O-antigen gene clusters of E. coli serogroups O1, O2, O18 and O75 were characterized. A multiplex PCR method based on O-antigen-specific genes was developed for the simultaneous detection of all 14 E. coli serogroups. The multiplex PCR method was shown to be highly specific and reproducible when tested against 186 E. coli and Shigella O-serogroup reference strains, 47 E. coli clinical isolates and 10 strains of other bacterial species. The sensitivity of the multiplex PCR method was analyzed and shown to detect O-antigen-specific genes in samples containing 25 ng of genomic DNA or in mock urine specimens containing 40 colony-forming units (CFUs) per ml. Five urine specimens from hospital were examined using this multiplex PCR method, and the result for one sample was verified by the conventional serotyping methods. The multiplex PCR method developed herein can be used for the detection of relevant E. coli strains from clinical and/or environmental samples, and it is particularly useful for epidemiologic analysis of urine specimens from patients with UTIs.  相似文献   

3.
The effect of aflatoxin B1 on growth and luminescence of marine luminous bacteria P. phosphoreum and recombinant E. coli Z905 cells was investigated. The bidirectional effect of aflatoxin B1 on the studied bacterial species was detected—an inhibition of luminescence in P. phosphoreum and its stimulation in E. coli. It was shown that aflatoxin B1 influences the cell luminescence in the freshly grown cultures and bacteria restored after lyophilization. It was detected that the effect of aflatoxin B1 was graded after interaction with the modified nanodiamond (MND) of detonation synthesis. After mycotoxin’s treatment with MND, it does not cause significant changes in bacterial luminescence. The possibilities for the use of P. phosphoreum and E. coli bacteria in the bioluminescent monitoring of aflatoxin B1 and the use of MND for mycotoxin deactivation are discussed.  相似文献   

4.
针对大肠杆菌O157:H7(Escherichia coli O157:H7,E.coli O157:H7)传统检测方法检测周期长的问题,建立了肉类中的E.coli O157:H7的改良环介导等温扩增(LAMP)快速检测方法。以E.coli O157:H7的O157特异性抗原rfbE基因、鞭毛H7特异性抗原fliC基因序列作为靶序列,分别设计2套增加了环引物的改良LAMP引物序列,单管同时检测,通过肉眼观察白色沉淀,判断检测结果。采用36株细菌验证了该改良LAMP引物的特异性。热裂解法提取的DNA经改良LAMP体系扩增20 min,检测E.coli O157:H7的灵敏度为1.4 CFU/mL,人工污染肉中的E.coli O157:H7检出限为1.8 CFU/g。137份实样中,检测出1份E.coli O157:H7假阳性,与行业标准SNT0973-2000符合率达到99.3%。  相似文献   

5.
Many receptors that are employed for the engulfment of apoptotic cells are also used for the recognition and phagocytosis of bacteria. Tyro3, Axl, and Mertk (TAM) are important in the phagocytosis of apoptotic cells by macrophages. Animals lacking these receptors are hypersensitive to bacterial products. In this report, we examine whether the TAM receptors are involved in the phagocytosis of bacteria. We found that macrophages lacking Mertk, Axl, Tyro3 or all three receptors were equally efficient in the phagocytosis of Gram-negative E. coli. Similarly, the phagocytosis of E. coli and Gram-positive S. aureus bioparticles by macrophages lacking TAM receptors was equal to wild-type. In addition, we found that Mertk did not play a role in killing of extracellular E. coli or the replication status of intracellular Francisella tularensis. Thus, while TAM receptors may regulate signal transduction to bacterial components, they are not essential for the phagocytosis and killing of bacteria.  相似文献   

6.
Conditions that influence the luminescence of natural and recombinant luminescent bacteria in the presence of blood serum were studied. In general, blood serum quenched the luminescence of the marine Photobacterium phosphoreum and the recombinant Escherichia coli strains harboring the luminescent system genes of Photobacterium leiognathi, but enhanced the luminescence of the soil bacterium Photorhabdus luminescens Zm1 and the recombinant E. coli strain harboring the lux operon of P. luminescens Zm1. The quenching effect of blood serum increased with its concentration and the time and temperature of incubation. The components of blood serum that determine the degree and specificity of its action on bacterial luminescence were identified.__________Translated from Mikrobiologiya, Vol. 74, No. 2, 2005, pp. 191–197.Original Russian Text Copyright © 2005 by Deryabin, Polyakov.  相似文献   

7.
Transition of bacteria to cell wall deficient L-forms in response to stress factors has been assumed as a potential mechanism for survival of microbes under unfavorable conditions. In this article, we provide evidence of paradoxal survival through L-form conversion of E. coli high cell density population after lethal treatments (boiling or autoclaving). Light and transmission electron microscopy demonstrated conversion from classical rod to polymorphic L-form shape morphology and atypical growths of E. coli. Microcrystal formations observed at this stage were interpreted as being closely linked to the processes of L-form conversion and probably involved in the general phenomenon of protection against lethal environment. Identity of the morphologically modified L-forms as E. coli was verified by species specific DNA-based test. Our study might contribute to a better understanding of the L-form phenomenon and its importance for bacterial survival, as well as provoke reexamination of the traditional view of killing strategies against bacteria.  相似文献   

8.
Three pathogens, Riemerella anatipestifer, Escherichia coli, and Salmonella enterica, are leading causes of bacterial fibrinous pericarditis and perihepatitis in ducks in China and worldwide. It is difficult to differentiate these pathogens when obtaining a diagnosis on clinical signs and pathological changes. The aim of this research was to develop a multiplex polymerase chain reaction (m-PCR) that could discriminate R. anatipestifer, E. coli, and S. enterica rapidly in field isolates, or detect the three bacteria in clinical samples from diseased ducks. We selected the DnaB helicase (dnaB) gene of R. anatipestifer, alkaline phosphatase (phoA) gene of E. coli and invasion protein (invA) gene of S. enterica as target genes. In optimized conditions, the limitation of detection was approximately 103 colony forming units (CFU) of each of these three bacterial pathogens per PCR reaction tube. The m-PCR method showed specific amplification of respective genes from R. anatipestifer, E. coli, and S. enterica. Using the m-PCR system, bacterial strains isolated from diseased ducks in our laboratory were categorized successfully, and the pathogens could also be detected in clinical samples from diseased ducks. Therefore, the m-PCR system could distinguish the three pathogens simultaneously, for identification, routine molecular diagnosis and epidemiology, in a single reaction.  相似文献   

9.
10.
This paper describes a possible application of luminescent Escherichia coli activated by blood serum for high-sensitivity and high-specificity assays of antibiotics in solutions. Antibiotics inhibited luminescence of a genetically engineered E. coli strain; the system sensitivity to some antibiotics grew notably after the cells had been preactivated by blood serum. The highest level of sensitivity (2.8 ± 0.6 ng/ml) of luminescent cells was obtained for aminoglycoside antibiotics (gentamicin and streptomycin). It is feasible to create the specific biosensor for antibiotics on the basis of bioluminescent E. coli strains by applying sera containing antibodies against the antibiotic under assay. The presence of antibodies specific for gentamicin in serum affects inhibition of luminescent cells by gentamicin but not inhibition by other antibiotics.  相似文献   

11.
Formation of bacterial biofilm communities leads to profound physiological modifications and increased physical and metabolic exchanges between bacteria. It was previously shown that bioactive molecules produced within the biofilm environment contribute to bacterial interactions. Here we describe new pore-forming colicin R, specifically produced in biofilms formed by the natural isolate Escherichia coli ROAR029 but that cannot be detected under planktonic culture conditions. We demonstrate that an increased SOS stress response within mature biofilms induces SOS-dependent colicin R expression. We provide evidence that colicin R displays increased activity against E. coli strains that have a reduced lipopolysaccharide length, such as the pathogenic enteroaggregative E. coli LF82 clinical isolate, therefore pointing to lipopolysaccharide size as an important determinant for resistance to colicins. We show that colicin R toxicity toward E. coli LF82 is increased under biofilm conditions compared with planktonic susceptibility and that release of colicin R confers a strong competitive advantage in mixed biofilms by rapidly outcompeting sensitive neighboring bacteria. This work identifies the first biofilm-associated colicin that preferentially targets biofilm bacteria. Furthermore, it indicates that the study of antagonistic molecules produced in biofilm and multispecies contexts could reveal unsuspected, ecologically relevant bacterial interactions influencing population dynamics in natural environments.  相似文献   

12.
The ribosome is a large macromolecular complex that must be assembled efficiently and accurately for the viability of all organisms. In bacteria, this process must be robust and tunable to support life in diverse conditions from the ice of arctic glaciers to thermal hot springs. Assembly of the Small ribosomal SUbunit (SSU) of Escherichia coli has been extensively studied and is highly temperature-dependent. However, a lack of data on SSU assembly for other bacteria is problematic given the importance of the ribosome in bacterial physiology. To broaden the understanding of how optimal growth temperature may affect SSU assembly, in vitro SSU assembly of two thermophilic bacteria, Geobacillus kaustophilus and Thermus thermophilus, was compared with that of E. coli. Using these phylogenetically, morphologically, and environmentally diverse bacteria, we show that SSU assembly is highly temperature-dependent and efficient SSU assembly occurs at different temperatures for each organism. Surprisingly, the assembly landscape is characterized by at least two distinct intermediate populations in the organisms tested. This novel, second intermediate, is formed in the presence of the full complement of r-proteins, unlike the previously observed RI* particle formed in the absence of late-binding r-proteins in E. coli. This work reveals multiple distinct intermediate populations are present during SSU assembly in vitro for several bacteria, yielding insights into RNP formation and possible antimicrobial development toward this common SSU target.  相似文献   

13.
Escherichia coli is by far the most widely used bacterial host for the production of membrane proteins. Usually, different strains, culture conditions and production regimes are screened for to design the optimal production process. However, these E. coli-based screening approaches often do not result in satisfactory membrane protein production yields. Recently, it has been shown that (i) E. coli strains with strongly improved membrane protein production characteristics can be engineered or selected for, (ii) many membrane proteins can be efficiently produced in E. coli-based cell-free systems, (iii) bacteria other than E. coli can be used for the efficient production of membrane proteins, and, (iv) membrane protein variants that retain functionality but are produced at higher yields than the wild-type protein can be engineered or selected for. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

14.
Diversity in Chemotaxis Mechanisms among the Bacteria and Archaea   总被引:15,自引:1,他引:14  
The study of chemotaxis describes the cellular processes that control the movement of organisms toward favorable environments. In bacteria and archaea, motility is controlled by a two-component system involving a histidine kinase that senses the environment and a response regulator, a very common type of signal transduction in prokaryotes. Most insights into the processes involved have come from studies of Escherichia coli over the last three decades. However, in the last 10 years, with the sequencing of many prokaryotic genomes, it has become clear that E. coli represents a streamlined example of bacterial chemotaxis. While general features of excitation remain conserved among bacteria and archaea, specific features, such as adaptational processes and hydrolysis of the intracellular signal CheY-P, are quite diverse. The Bacillus subtilis chemotaxis system is considerably more complex and appears to be similar to the one that existed when the bacteria and archaea separated during evolution, so that understanding this mechanism should provide insight into the variety of mechanisms used today by the broad sweep of chemotactic bacteria and archaea. However, processes even beyond those used in E. coli and B. subtilis have been discovered in other organisms. This review emphasizes those used by B. subtilis and these other organisms but also gives an account of the mechanism in E. coli.  相似文献   

15.
Chlamydia trachomatis infection is the most common bacterial sexually transmitted disease and a major public health problem worldwide. Fast and sensitive point-of-care diagnostics including non-invasive sample collection would be of value for the prevention of C. trachomatis transmission. The aim of this study was to develop a fast, reliable, non-invasive and easy-to-use homogenous PCR assay for the detection of C. trachomatis. Bacteria were concentrated from urine by a simple and fast centrifugation-based urine pretreatment method. Novel automated GenomEra technology was utilized for the rapid closed-tube PCR including time-resolved fluorometric detection of the target using lanthanide chelate labeled probes. We have developed a rapid C. trachomatis assay which provides qualitative results in 1 h with diagnostic sensitivity and specificity of 98.7% and 97.3%, respectively. The novel assay can be performed with minimal laboratory expertise and without sophisticated DNA-extraction devices and has performance comparable to current gold standard assays.  相似文献   

16.
Conditions that influence the luminescence of natural and recombinant luminescent bacteria in the presence of blood serum were studied. In general, blood serum quenched the luminescence of the marine Photobacterium phosphoreum and the recombinant Escherichia coli strains harboring the luminescent system genes of Photobacterium leiognathi, but enhanced the luminescence of the soil bacterium Photorhabdus luminescens Zm1 and the recombinant E. coli strain harboring the lux operon of P. luminescens Zm1. The quenching effect of blood serum increased with its concentration and the time and temperature of incubation. The components of blood serum that determine the degree and specificity of its action on bacterial luminescence were identified.  相似文献   

17.
The manufacturing processes of many electronic and medical products demand the use of high-quality water. Hence the water supply systems for these processes are required to be examined regularly for the presence of microorganisms and microbial biofilms. Among commonly used bacteria detection approaches, the ATP luminescence assay is a rapid, sensitive, and easy to perform method. The aim of this study is to investigate whether ATP regeneration from inorganic pyrophosphate, a product of the ATP luminescence assay, can stabilize the bioluminescence signals in ATP detection. ADPglc pyrophosphorylase (AGPPase), which catalyzes the synthesis of ATP from PPi in the presence of ADPglc, was selected because the system yields much lower luminescence background than the commercially available ATP sulfurylase/adenosine 5′-phosphosulfate (APS) system which was broadly used in pyrosequencing technology. The AGPPase-based assay could be used to measure both PPi and ATP quantitatively and shows 1.5- to 4.0-fold slight increases in a 10-min assay. The method could also be used to stabilize the luminescence signals in detection of Escherichia coli, Pseudomonas aeruginosa, and Bacillus cereus in either broth or biofilm. These findings suggest that the AGPPase-based ATP regeneration system will find many practical applications such as detection of bacterial biofilm in water pipelines.  相似文献   

18.
Many insects have associations with bacteria, although it is often difficult to determine the intricacies of the relationships. In one such case, facultative bacteria have been discovered in a major crop pest and virus vector, the Western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Several bacterial isolates have been studied in Netherlands greenhouse thrips populations, with molecular data indicating that these bacteria were similar to Escherichia coli, although biochemical properties suggested these microbes might actually be most similar to plant pathogenic bacteria in the genus Erwinia. We focused on the bacterial flora of the Hawaiian Islands thrips population where these gut bacteria were first reported in 1989. We also analyzed a German population and a 1965 California population preserved in ethanol. Culture and culture-independent techniques revealed a consistent microflora that was similar to the Netherlands isolates studied. The similarity among thrips microbes from multiple populations and environments suggested these bacteria and their hosts share a widespread association. Molecular phylogeny based on the 16S rRNA gene and biochemical analysis of thrips bacteria suggested two distinctive groups of microbes are present in thrips. Phylogenetic analysis also revealed support for one thrips bacterial group having a shared ancestry with Erwinia, whereas the second group of thrips bacteria fell out with E. coli, but without support. Although species-specific relationships were indeterminable due to the conservative nature of 16S, there is strong indication that thrips symbionts belong to two different genera and originated from environmental microbes.  相似文献   

19.
20.
In this study, we developed a microplate sandwich analysis of Escherichia coli and Staphylococcus aureus bacterial pathogens based on the interaction of their cell wall carbohydrates with natural receptors called lectins. An immobilized lectin-cell-biotinylated lectin complex was formed in this assay. Here, we studied the binding specificity of several plant lectins to E. coli and S. aureus cells, and pairs characterized by high-affinity interactions were selected for the assay. Wheat germ agglutinin and Ricinus communis agglutinin were used to develop enzyme-linked lectinosorbent assays for E. coli and S. aureus cells with the detection limits of 4 × 106 and 5 × 105 cells/mL, respectively. Comparison of the enzyme-linked immonosorbent assay and the enzyme-linked lectinosorbent assay demonstrated no significant differences in detection limit values for E. coli. Due to the accessibility and universality of lectin reagents, the proposed approach is a promising tool for the control of a wide range of bacterial pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号