首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
本文报道了一种新的抗人角蛋白单克隆抗体。用于免疫的抗原来自人足胼胝,传统的观念认为,此部位的角蛋白属于“软”角蛋白。然而我们在免疫荧光定位时发现,此单抗不能与一般上皮、表皮和培养表皮细胞的“软”角蛋白相反应,却能与哺乳动物的多种组织的“硬”角蛋白相反应。  相似文献   

2.
The dorsal surfaces of mammalian tongues are covered with numerous projections known as filiform papillae whose morphology varies in different species. Using a panel of monoclonal antibodies to keratins as probes, we have established that, in both human and mouse, the interpapillary epithelia express mainly the "esophageal-type" keratins, while the papillary epithelia express "skin-type" keratins as well as some keratins reacting with a monoclonal antibody (AE13) to hair keratins. The AE13-reactive proteins of the mouse were found to be very similar to those of authentic mouse hair keratins. However, the corresponding protein of human tongue appears to be different from all known human keratins. This protein has a MW of 51K; it is relatively acidic; it is sulfhydryl-rich, as revealed by iodoacetic acid-induced charge and apparent size shift; it shares an epitope with all the known acidic human hair keratins; and it is associated with keratin fibrils in vivo. This protein may therefore be regarded as a novel type I "hard" keratin. These data establish that mammalian dorsal tongue epithelia can be divided into at least three compartments that undergo mainly "esophageal-", "skin-" and "hair"-types of differentiation. Different keratin filaments, e.g., those of the esophageal- and hair-types, exhibit strikingly different degrees of lateral aggregation, which can potentially account for the different physical strength and rigidity of various cellular compartments. Our data also suggest the possibility that variations in papillary structure in human and mouse may arise from different spatial arrangements of specific keratinocytes, and/or from the expression of specialized hair-related keratins.  相似文献   

3.
Recent data have indicated that specific keratin molecules can provide useful markers for studying different types and stages of epithelial differentiation. To utilize these protein markers, however, it is important to establish the keratin nature of the molecules and identify unambiguously the individual keratin species. In this paper, we show that this can be done relatively easily by one- and two-dimensional gel electrophoresis combined with immunoblotting using three monoclonal antibodies (aIF, AE1, and AE3). The aIF antibody has previously been shown to crossreact with all classes of intermediate-filament proteins. Using one- and two-dimensional immunoblotting, we establish that this antibody recognizes all known epithelial keratins of human and rabbit, although the reaction is relatively strong for the larger, basic keratins and is relatively weak for some of the smaller, acidic keratins. In contrast, AE1 and AE3 monoclonal antibodies have previously been shown to be highly specific for the acidic and basic subfamilies of the keratins, respectively. The combined use of the broadly reacting aIF antibody and the subfamily-specific AE1 and AE3 monoclonal antikeratin antibodies should facilitate the immunological definition, identification, and classification of mammalian epithelial keratins.  相似文献   

4.
Reptilian scales are mainly composed of alpha-and beta-keratins. Epidermis and molts from adult individuals of an ancient reptilian species, the tuatara (Sphenodon punctatus), were analysed by immunocytochemistry, mono- and bi-dimensional electrophoresis, and western blotting for alpha- and beta-keratins. The epidermis of this reptilian species with primitive anatomical traits should represent one of the more ancient amniotic epidermises available. Soft keratins (AE1- and AE3-positive) of 40-63 kDa and with isoelectric points (pI) at 4.0-6.8 were found in molts. The AE3 antibody was diffusely localised over the tonofilaments of keratinocytes. The lack of basic cytokeratins may be due to keratin alteration in molts, following corneification or enzymatic degradation of keratins. Hard (beta-) keratins of 16-18 kDa and pI at 6.8, 8.0, and 9.2 were identified using a beta-1 antibody produced against chick scale beta-keratin. The antibody also labeled filaments of beta-cells and of the mature, compact beta-layer. We have shown that beta-keratins in the tuatara resemble those of lizards and snakes, and that they are mainly basic proteins. These proteins replace cytokeratins in the pre-corneoum beta-layers, from which a hard, mechanically resistant corneoum layer is formed over scales. Beta-keratins may have both a fibrous and a matrix role in forming the hard texture of corneoum scales in this ancient species, as well as in more recently evolved reptiles.  相似文献   

5.
We have characterized the keratin proteins of various bovine epithelial tissues by one- and two-dimensional gel electrophoresis, coupled with the immunoblot technique using AE1, AE2, AE3, AE5, CA20, BE14, and 6.11 monoclonal antikeratin antibodies. The results indicate that all known bovine keratins can be divided into two subfamilies. The "acidic" (Type I) subfamily consists of 41-, 43-, 45-, 46-, 50-, 54-, 56-, and 56.5-kDa keratins, all of which have a pI of less than 5.6, and most of them are recognized by our AE1 antibody, whereas the "neutral-to-basic" (Type II) subfamily consists of 55-, 57-, 58-, 62-65-, 66-, and 67-kDa keratins, all of which have a pI of greater than 6.0 and are recognized by our AE3 antibody. Tissue distribution data and cell culture studies show that, within the two subfamilies, keratins with similar "size ranks" form a "pair" as defined by frequent co-expression. Furthermore, within most "keratin pairs," the basic keratin is larger than the acidic one by 8-10 kDa. These results provide further support for the concepts of "keratin subfamilies" and keratin pairs and are consistent with the possibility that the acidic and basic members of at least some keratin pairs may interact specifically during in vivo tonofilament assembly and/or function. Immunoblotting data derived from the use of several monospecific antibodies show that although the size, charge, and pattern of expression of most bovine keratins are similar to those of the human counterparts, there are important exceptions to this rule.  相似文献   

6.
Five different type I keratins from a teleost fish, the rainbow trout Oncorhynchus mykiss, have been sequenced by cDNA cloning and identified at the protein level by peptide mass mapping using MALDI-MS. This showed that the entire range of type I keratins detected biochemically in this fish has now been sequenced. Three of the keratins are expressed in the epidermis (subtype Ie), whereas the other two occur in simple epithelia and mesenchymal cells (subtype Is). Among the Is keratins is an ortholog of human K18; the second Is polypeptide is clearly distinct from K18. We raised a new monoclonal antibody (F1F2, subclass IgG1) that specifically recognizes trout Is keratins, with negative reactions on zebrafish. A phylogenetic tree has been constructed from a multiple alignment of the rod domains of the new sequences together with type I sequences from other vertebrates such as shark, zebrafish, and human; a recently sequenced lamprey Is keratin was applied as outgroup. This tree shows one branch defining the K18 orthologs and a second branch containing all other type I keratins (mostly subtype Ie). Within this second branch, the teleost keratins form a separate, highly bootstrap-supported twig. This tree leaves little doubt that the teleost Ie keratins diversified independently from the mammalian Ie keratins.  相似文献   

7.
Summary The expression of vimentin and keratins is analysed in the early postimplantation embryo of the rabbit at 11 days post conceptionem (d.p.c.) using a panel of monoclonal antibodies specific for single intermediate filament polypeptides (keratins 7, 8, 18, 19 and vimentin) and a pan-epithelial monoclonal keratin antibody. Electrophoretic separation of cytoskeletal preparations obtained from embryonic tissues, in combination with immunoblotting of the resulting polypeptide bands, demonstrates the presence of the rabbit equivalents of human keratins 8, 18, and vimentin in 11-day-old rabbit embryonic tissues. Immunohistochemical staining shows that several embryonic epithelia such as notochord, surface ectoderm, primitive intestinal tube, and mesonephric duct, express keratins, while others (neural tube, dermomyotome) express vimentin, and a third group (coelomic epithelia) can express both. Similarly, of the mesenchymal tissues sclerotomal mesenchyme expresses vimentin, while somatopleuric mesenchyme (abdominal wall) expresses keratins, and splanchnopleuric mesenchyme (dorsal mesentery) expresses both keratins and vimentin. While these results are in accordance with most results of keratin and vimentin expression in embryos of other species, they stand against the common concept of keratin and vimentin specificity in adult vertebrate tissues. Furthermore, keratin and vimentin are not expressed in accordance with germ layer origin of tissues in the mammalian embryo; rather the expression of these proteins seems to be related to cellular function during embryonic development.Supported by the Deutsche Forschungsgemeinschaft and by the Netherlands Cancer Foundation  相似文献   

8.
Normal T-cell development is dependent on interactions with the thymic microenvironment; thymic epithelial cells are thought to play a key role in the induction of thymocyte maturation, both through direct contact and, indirectly, via thymic hormone secretion. It has been postulated that thymic epithelial cells progress through an antigenically defined pathway of differentiation similar to that of epidermal keratinocytes. As keratins vary according to epithelial cell type and the stage of epithelial cell maturation, we used a panel of monoclonal antibodies against keratins to study specific types of keratin intermediate filaments within human thymic epithelium. The demonstration in human thymus of keratins previously shown to be associated with distinct stages of epidermal keratinocytic maturation would support the hypothesis that thymic epithelial cells undergo sequential stages of differentiation. Two-dimensional immunoblot analysis of cytoskeletal extracts from human thymus revealed that thymic epithelium contains the following keratins: 1-2, 5, 6, 7, 8, 10, 13, 14, 15, 16, and 17 (molecular masses, 65-67, 58, 56, 54, 52, 56.5, 51, 50, 50', 48, and 46 kilodaltons, respectively). Thus, in thymic epithelium, we found keratins previously observed in epidermal basal cells (5, 14, 15), as well as keratins specific for terminally differentiated keratinocytes in supra-basal epidermis (1-2, 10). Indirect immunofluorescence (IF) performed on fetal and postnatal human thymus demonstrated that keratin epitopes recognized by antibodies AE-3, 35 beta H11, and RTE-23 are present on epithelial cells of the subcapsular cortex, the cortex, the medulla, and Hassall's bodies. In contrast, antibodies AE-1 and RTE-22 reacted primarily with neuroendocrine thymic epithelium (subcapsular cortex, medulla, Hassall's bodies). The epithelial reactivity of antibody AE-2 was limited to epithelial cells in Hassall's bodies and did not appear until 16 weeks of fetal gestation i.e., when Hassall's bodies first formed. Two-dimensional gel analysis of thymic keratins demonstrated that antibody AE-2 identified only the keratins with molecular masses of 56.6 and 65-67 kilodaltons (10 and 1-2 respectively) in thymus. These data, together with the selective reactivity of AE-2 with Hassall's bodies in fluorescence assays, demonstrate the localization in Hassall's bodies of the high-molecular-weight keratins associated with the late stages of epidermal cell maturation. In summary, we demonstrated that human thymic epithelium contains specific keratins found in multiple epithelial types as well as keratins associated with both early and late stages of epidermal cell differentiation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The medulla of the unconstricted notochords of the shortnose sturgeon, Acipenser brevirostratus, and African lungfish, Protopterus annectens, and the cellular component of the intervertebral joint tissue of the teleost fish, Perca flavescens, are comprised of cells with a large central vacuole. Previous studies on the fine structure of this tissue revealed that the cytoplasm surrounding these vacuoles consists of 10-nm-diameter intermediate filaments. Since in mammals there are a large number of tissue-specific types of intermediate filaments, this study uses antibodies to mammalian intermediate filaments to determine the type of filaments present in the notochord cells of bony fishes. Positive labeling using a polyclonal antibody to human skin keratins is observed in the cytoplasm of the notochord cells in the intervertebral tissues of Perca. These tissues are also probed with the AE series antibodies that label keratins found in mammalian epithelial cells. In both Protopterus and Acipenser the peripheral cytoplasm of the notochord cells is labeled with all three AE antibodies. In Perca only the AE3 antibody probe produces positive staining. These staining patterns are consistent with previous studies on the localization of cytokeratins in fish tissues and indicate that the intermediate filaments in the notochord cells of bony fishes are immunologically similar to the mammalian keratins. J. Morphol. 236:105–116, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号