首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Afine-structure genetic map of the histidine transport region of the Salmonella typhimurium chromosome was constructed. Twenty-five deletion mutants were isolated and used for dividing the hisJ and hisP genes into 8 and 13 regions respectively. A total of 308 mutations, spontaneous and mutagen induced, have been placed in these regions by deletion mapping. The histidine transport operon is presumed to be constituted of genes dhuA, hisJ, and hisP, and the regulation of the hosP and hisJ genes by dhuA is discussed. The orientation of this operon relative to purF has been established by three-point crosses as being: purF duhA hisJ hisP.  相似文献   

2.
We demonstrate that tandem duplications of the histidine transport operon can be selected by requesting elevated levels of transport activity to be present. Several strains were constructed which contain duplications heterozygotic for either hisJ, hisQ, or hisP. The size of one duplication which was analyzed in detail is about 16 genes, with one end close to the promoter site (dhuA) of the histidine transport operon and, therefore, enclosing about 12 more genes counterclockwise to this operon. Duplication-carrying strains could be utilized for the selection of deletion mutations by requiring both copies of the operon to be rendered defective simultaneously and, therefore, unable to transport into the cell an inhibitory histidine analog, alpha-hydrazino imidazole propionic acid. Over 60% (probably as high as 100%) of the alpha-hydrazino imidazole propionic acid-resistant strains arising in the selection are deletion mutants. The principle of our selection method is generally applicable and will be useful in the accumulation of deletions for mapping and fusing of genes and other purposes.  相似文献   

3.
Histidine and Aromatic Permeases of Salmonella typhimurim   总被引:22,自引:14,他引:8  
Mutants defective either in the histidine permease (hisP) or in the aromatic permease (aroP) were isolated in Salmonella typhimurium and were characterized. The hisP locus had a 49% linkage to purF by phage transduction. The aroP locus was close to proA. Merozygotes diploid for the hisP gene were constructed by episomal transfer, and hisP(+) was dominant over hisP. The properties of merozygotes are described and discussed. A method for the selection of revertants of hisP mutants was devised. By this method, one of the hisP mutants was characterized as an amber mutant. The specificity of the aromatic permease was investigated by using as substrates analogues of the aromatic amino acids and of histidine.  相似文献   

4.
Periplasmic transport systems consist of a membrane-bound complex and a periplasmic substrate-binding protein and are postulated to function by translocating the substrate either through a nonspecific pore or through specific binding sites located in the membrane complex. We have isolated mutants carrying mutations in one of the membrane-bound components of the histidine permease of Salmonella typhimurium that allow transport in the absence of both histidine-binding proteins HisJ and LAO (lysine-, arginine-, ornithine-binding protein). All of the mutations are located in a limited region of the nucleotide-binding component of the histidine permease, HisP. The mutants transported substrate in the absence of binding proteins only when the membrane-bound complex was produced in large amounts. At low (chromosomal) levels, the mutant complex was unable to transport substrate in the absence of binding proteins but transported it efficiently in the presence of HisJ. The alterations responsible for the mutations were identified by DNA sequencing; they are closely related to a group of hisP mutations isolated as suppressors of HisJ interaction mutations (G. F.-L. Ames and E. N. Spudich, Proc. Natl. Acad. Sci. USA 73:1877-1881, 1976). The hisP suppressor mutations behaved similarly to these newly isolated mutations despite the entirely different selection procedure. The results are consistent with the HisP protein carrying or contributing to the existence of a substrate-binding site that can be mutated to function in the absence of a binding protein.  相似文献   

5.
Summary Fructose was shown to be phosphorylated by a specific phosphoenolpyruvatc-dependent phosphotransferase system (PTS) in Xanthomonas campestris pv. campestris. Transposon mutagenesis of X. campestris was performed and two mutants affected in growth on fructose were isolated. Both mutants were deficient in PTS activity. Comparison of the rate of uptake and phosphorylation of fructose in the wild-type and in the mutant strains revealed the presence of a second fructose permeation and phosphorylation pathway in this bacterium: an unidentified permease coupled to an ATP-dependent fructokinase. One of the two mutants was also deficient in fructokinase activity. Chromosomal DNA fragments containing the regions flanking the transposon insertion site were cloned from both mutant strains. Their physical study revealed that the insertion sites were separated by 1.4 kb, allowing the reconstruction of a wild-type DNA fragment which complemented one of the two mutants. The region flanking the transposon insertion site was sequenced in one of the mutants, showing that the transposon had interrupted the gene encoding the fructose Ell. The mutant strains also failed to utilize mannose, sucrose and mannitol, suggesting the existence of a branch point between the metabolism of fructose and of these latter carbohydrates.  相似文献   

6.
l-Histidine and, to a lesser degree, l-phenylalanine at concentrations of 10(-4)m inhibit the growth of leaky mutants (bradytrophs) of Bacillus subtilis that are deficient in the synthesis of p-hydroxyphenylpyruvate, the first intermediate specific to tyrosine synthesis. The inhibition can be overcome by growth factor amounts of l-tyrosine and p-hydroxyphenylpyruvate. Histidine and phenylalanine are capable of inhibiting the synthesis of tyrosine in several ways, and the major physiological effect which results in growth inhibition has not been established. Both l-histidine and l-phenylalanine inhibit the activity of prephenate dehydrogenase at concentrations about 100-fold higher than the inhibitory concentration of l-tyrosine. Histidine also appears to repress the synthesis of prephenate dehydrogenase because a histidine bradytroph growing in histidine-supplemented medium has a twofold lower level of this enzyme than the same cells growing in unsupplemented medium. These same two amino acids also inhibit the growth of a bradytroph deficient in dehydroquinate synthetase, an early enzyme in the pathway of tyrosine, phenylalanine, and tryptophan synthesis. The inhibition is overcome by a combination of tyrosine and phenylalanine. Histidine-resistant derivatives of both the prephenate dehydrogenase and dehydroquinate synthetase-deficient strains, which simultaneously have gained resistance to phenylalanine, have been isolated. Most of these resistant mutants synthesize additional tyrosine compared with the parent strain. One class of resistant mutants excretes tyrosine and has a number of enzymes of aromatic acid synthesis which are no longer repressible by any combination of the aromatic amino acids. Tyrosine inhibits the growth of histidine bradytrophs. Histidine, at growth factor levels, overcomes the inhibition.  相似文献   

7.
The high-affinity histidine permease of Salmonella typhimurium is encoded by a four-gene operon containing a large intercistronic region located between the first gene (hisJ) and the three distal genes (hisQ, hisM, hisP). The level of expression of hisJ is 30-fold greater than that of hisP. In order to investigate the role of the intercistronic region in intra-operonic control of gene expression, we have isolated MudII-mediated lacZ gene fusions to hisQ, hisM and hisP. We have used these fusions to isolate and analyse mutants that have altered levels of expression of the hisQ gene, the first gene downstream from the intercistronic region. The results indicate that intra-operonic regulation is due to a combination of factors including efficiency of translational initiation, mRNA degradation, and retroregulation of hisJ expression. They also suggest that the REP (Repetitive Extragenic Palindromic) sequences, which are located in the hisJ-hisQ intercistronic region, may interfere with translation of the hisQ gene and affect upstream messenger RNA stability by protecting it from 3' to 5' nuclease degradation (in agreement with data presented by Newbury et al., 1987).  相似文献   

8.
In the current study, lactose permease mutants were isolated which exhibited an enhanced recognition for maltose (an alpha-glucoside) but a diminished recognition for thiodigalactoside, TDG (a beta-galactoside). Maltose/TDGR mutants were obtained from four different parental strains encoding either a wild-type permease (pTE18), a mutant lactose permease which recognizes maltose (pB15) or mutant lactose permeases which recognize maltose but are resistant to inhibition by cellobiose (pTG and pBA). A total of 27 independent mutants were isolated: 12 from pTE18, 10 from pB15, 3 from pTG, and 2 from pBA. DNA sequencing of the 27 mutants revealed that the mutants contain single base pair substitutions within the lac Y gene which result in single amino acid substitutions within the lactose permease. All of the mutants obtained from pTE18, pTG, and pBA involved a change of Tyr-236 to histidine, phenylalanine, or asparagine. From pB15, three different types of mutants were obtained: Tyr-236 to histidine, Ile-303 to phenylalanine, or His-322 to asparagine. When assayed for [14C]maltose transport, the maltose/TDGR mutants were seen to transport maltose significantly faster than the wild type. Furthermore, although TDG was shown to inhibit the uptake of maltose in the four parental strains, all of the mutant strains exhibited a dramatic resistance to TDG inhibition. Most of the maltose/TDGR mutants were also shown to be very defective in the transport of lactose. However, certain mutants (i.e., Asn-322) exhibited moderate lactose transport activity. Finally, it was observed that all of the mutant strains were unable to facilitate the uphill accumulation of beta-methylthiogalactopyranoside. The locations of the amino acid substitutions are discussed with regard to their possible role in sugar recognition.  相似文献   

9.
10.
11.
Effects of galU mutation on flagellar formation in Escherichia coli.   总被引:13,自引:8,他引:5       下载免费PDF全文
Y Komeda  T Icho    T Iino 《Journal of bacteriology》1977,129(2):908-915
Two mutants of Escherichia coli strictly deficient in uridine-diphosphoglucose pyrophosphorylase activity (galU) were found to have very small numbers of flagellar filaments and hooks. In these mutants, both the rate of flagellin (flagellar protein) synthesis and the amount of messenger ribonucleic acid specific for flagellin were considerably lower than in the parental strains. Motile revertants from the galU mutants were isolated and were found to carry a suppressor mutation, which was mapped in the flaH cistron. These strains formed swarms under conditions of catabolite repression; their intracellular concentration of cyclic adenosine 5'-monophosphate was the same as that in the parental strains. These results suggest that the outer membrane affects flagellar formation through the flaH gene product.  相似文献   

12.
Homozygous NEUT2 mice lack cytosolic 10-formyltetrahydrofolate dehydrogenase (FDH; Champion et al. (1994) Proc. Natl. Acad. Sci. USA 91, 11,338-11,342) and as a consequence should be unable to oxidize carbon 2 of l-histidine to CO2 via 10-formyltetrahydrofolate in liver cytosol. There was essentially no oxidation of l-[2-14C]histidine to 14CO2 in homozygous NEUT2 mice, but 52% of the [2-14C]l-histidine dose was recovered in the urine within 24 h. Analysis of urine samples for [14C]formiminoglutamate, the expected excretion product, was negative; however, [14C]urocanic acid was detected. Investigation of histidine catabolism via the folate-dependent deamination pathway revealed no detectable urocanase activity in homozygous NEUT2 mice, while heterozygous NEUT2 mice had 50% urocanase activity compared to normal mice. Histidase and formiminotransferase-cyclodeaminase, also on the histidine deamination pathway, had similar specific activities in normal and NEUT2 mice. Histidine-pyruvate aminotransferase, the first enzyme of the alternate histidine transamination catabolic pathway did not appear to be affected by the loss of urocanase. Based on the excretion of urocanic acid it is estimated that NEUT2 mice catabolize approximately 40 micromol/day via the deamination pathway. The loss of urocanase activity in homozygous NEUT2 mice may allow these mice to survive the disruption in folate metabolism by sparing the liver cytosolic tetrahydrofolate pool.  相似文献   

13.
The transposable drug resistance element Tn10 was employed as a region of homology to direct the insertion of Tn10-containing derivatives of F'ts114 lac into the chromosome of a Salmonella typhimurium strain that carries a Tn10 insertion in the histidine transport operon. Based on the direction of transfer of the resulting Hfr strains, the chromosomal Tn10 insertion was determined to be in orientation "A." New F' plasmids were selectively generated from one of the Hfr strains. The F' factors carry an intact dhuA hisJ portion of the histidine transport operon. A Southern hybridization revealed that one of the F' plasmids was formed by a type II excision event.  相似文献   

14.
Chlamydomonas reinhardtii mutants resistant to the herbicide sulfometuron methyl (SM) were isolated and characterized. Growth of C. reinhardtii is sensitive to inhibition by SM at a concentration of 1 micromolar. Four mutants resistant to 10- to 100-fold higher concentrations were isolated. All possess a form of acetolactate synthase (ALS) whose specific activity in cell extracts is 100- to 1000-fold more resistant to SM than is the specific activity of wild-type enzyme. Only one mutant had abnormally low ALS specific activity in the absence of SM. All mutations were inherited as single lesions in the nuclear genome and were expressed in heterozygous diploids. The mutations in two strains mapped to linkage group IX about 30 centimorgans from streptomycin resistance and on the same side of the centromere, and in genetic crosses between mutants no segregation was observed. Accordingly, all mutations are tentatively assigned to gene smr-1. Herbicide resistance appears to be suitable as a selectable marker for molecular transformation in this organism.  相似文献   

15.
Mutations that cause an increased level of expression of the histidine transport operon were isolated and characterized genetically. Five independently isolated promoter-up mutations were transferred to an M13 hybrid phage that carries the histidine transport operon, and their nucleotide sequences were determined. For all five mutations, the change was the same as the one previously determined for promoter-up mutation dhuA1: a C-to-T change in the Pribnow box rendered this region more homologous to the consensus sequence. Methods for enabling Salmonella typhimurium to support growth of M13 phage effectively and for easy transfer of chromosomal mutations onto the hybrid phage are presented.  相似文献   

16.
Amino acid transport in Mycoplasma   总被引:4,自引:3,他引:1  
The uptake of l-histidine by Mycoplasma fermentans and l-methionine by M. hominis was found to be dependent on temperature and pH and to follow saturation kinetics. Several metabolic inhibitors inhibited this uptake. The transport system for l-methionine was highly specific. The l-histidine transport system was less specific, and the uptake was competitively inhibited by l-arginine and l-lysine. l-Histidine accumulated in the intracellular pool of M. fermentans at a concentration about 200 times that found in the medium. Efflux of accumulated l-histidine was demonstrated at 37 C, but not at 0 C. The rate of efflux was greatly accelerated by addition of l-histidine to the medium. The findings indicate that the Mycoplasma cell membrane contains specific transport systems resembling the permease systems of other microorganisms.  相似文献   

17.
H Inoue  C Ishii 《Mutation research》1984,125(2):185-194
Seven different mutants that show high sensitivity to MMS killing were isolated and mapped at different loci. One group, mms-(SA1), mms-(SA2) and mms-(SA6), showed high sensitivity to MMS but not to UV or gamma-rays. Another group, mms-(SA4) and mms-(SA5), showed extremely high sensitivity to UV and MMS. And mms-(SA3) and mms-(SA7) were moderately sensitive to both UV and MMS. Mms-(SA4) and mms-(SA1) were identified as alleles of uvs-2 and mus-7, respectively, which had been previously isolated. The mms-(SA1), mms-(SA6) and mms-(SA7) strains were barren in homozygous crosses, and the mms-(SA5) strain was barren in heterozygous crosses. The mms-(SA1), mms-(SA3) and mms-(SA5) strains showed high sensitivity to histidine. In summary, at least two new loci involved in the repair of MMS damage have been identified. The possibility that some of these new mutants are in new repair pathways is suggested.  相似文献   

18.
A series of mutants of Escherichia coli K-12 requiring a high concentration of L-proline for growth were isolated from a proline auxotroph strain, JE2133. Genetic studies of the mutants, PT19, PT21, and PT22, showed that all the mutations (proT) were point mutations, and these were mapped at 82 min on the E. coli genetic map. Intact cells and cytoplasmic membrane vesicles of these mutants were specifically defective in L-proline transport activity. Strain PT21 had no detectable activity of the L-proline transport carrier at all, and strains PT19 and PT22 had only 1/35 and 1/70, respectively, of the transport activity of the parental strain. The mutants were also shown to have a defect in proline-binding function of the carrier by measuring specific binding of proline to sonically disrupted membranes. These results indicate that the gene proT determines the function of proline carrier in the cytoplasmic membrane.  相似文献   

19.
Control of formation of the histidyl-transfer ribonucleic acid (tRNA) synthetase with an increased K(m) for histidine was studied in a hisS mutant of Salmonella typhimurium. Histidine restriction of both the hisS and hisS(+) strains resulted in a derepression of synthesis of histidyl-tRNA synthetase. When grown in a concentration less than the K(m) (100 mug/ml) of l-histidine, the hisS mutant maintained a higher level of histidyl-tRNA synthetase than the hisS(+) strain. Addition of excess amounts of l-histidine to the growth medium of the hisS mutant culture grown with 100 mug of l-histidine per ml resulted in a repression of histidyl-tRNA synthetase formation to equal that of the hisS(+) strain grown in 100 mug of l-histidine per ml. These data confirm previous findings that histidine tRNA is involved in the repression of synthesis of histidyl-tRNA synthetase.  相似文献   

20.
We have isolated a hybrid gene, composed of the first 455 nucleotides of hisP and nucleotides 275-1107 of malK, the genes coding for the nucleotide-binding components of the high-affinity transport systems for histidine and maltose in Salmonella typhimurium, respectively. The fusion had occurred by recombination within 11 homologous base pairs located between the two DNA fragments. In the chimeric protein peptidic motifs A and B, proposed to be part of the nucleotide-binding fold, originate from HisP and MalK, respectively. Plasmid pES42-39, harbouring the hybrid gene, was shown to complement only a malK mutation but failed to complement a hisP deletion mutation. The chimeric protein was identified by immunoblotting as a protein with an apparent molecular mass of 49kDa. Removal of the C-terminal 77 amino acid residues from the chimeric protein resulted in the loss of function in transport. In contrast, 51 amino acid residues could be removed from the C-terminus of wild-type MalK without any effect. Upon overproduction the chimeric protein, as wild-type MalK, inhibited expression of the malB regulon. However, both truncated proteins, when overproduced, did not exhibit this activity. Based on these results, a tentative model of the functional domains of MalK is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号