首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distinct molecular mechanisms of Fas resistance in murine B lymphoma cells   总被引:5,自引:0,他引:5  
A panel of murine B lymphoma cell lines, which express different levels of Fas, was extensively studied for sensitivity to Fas-mediated death signals via an anti-Fas mAb and Fas ligand-bearing cell lines. Expression of the Fas receptor on the B lymphoma cell lines did not correlate with their capacity to undergo Fas-mediated apoptosis. Moreover, Fas-associated death domain protein recruitment to the death-inducing signaling complex (DISC) complex occurred in all cell lines expressing Fas, regardless of whether they were sensitive to Fas-mediated death. Interestingly, the protein synthesis inhibitor, cycloheximide, and protein kinase C inhibitors, such as bisindolylmaleimide, rendered one of the resistant cell lines, CH33, sensitive to signals from the Fas receptor, although the levels of Fas were unchanged. This suggests that constitutive PKC activation plays a role in Fas resistance, perhaps by up-regulating NF-kappaB or Bcl-2 family members. Interestingly, CH33 demonstrated caspase 8 activity upon engagement of the Fas receptor in the absence of pharmacological manipulation, suggesting that the block in apoptosis is downstream of the DISC complex. In contrast, the fact that Fas-associated death domain protein was recruited to the DISC complex in other resistant lines, such as WEHI-231, with no caspase 8 activation indicates that these cells may be blocked within the DISC complex. Indeed, Western blot analysis showed that WEHI-231 expressed an isoform of FLICE-like inhibitory protein (cFLIPL), an antiapoptotic protein within the DISC. These studies provide evidence that murine B lymphoma cells utilize different molecular mechanisms along the Fas-signaling cascade to block apoptosis.  相似文献   

2.
The extrinsic apoptosis pathway is initiated by binding of death ligands to death receptors resulting in the formation of the death‐inducing signaling complex (DISC). Activation of procaspase‐8 within the DISC and its release from the signaling complex is required for processing executor caspases and commiting cell death. Here, we report that the atypical cadherin FAT1 interacts with caspase‐8 preventing the association of caspase‐8 with the DISC. We identified FAT1 in a genome‐wide siRNA screen for synthetic lethal interactions with death receptor‐mediated apoptosis. Knockdown of FAT1 sensitized established and patient‐derived glioblastoma cell lines for apoptosis transduced by cell death ligands. Depletion of FAT1 resulted in enhanced procaspase‐8 recruitment to the DISC and increased formation of caspase‐8 containing secondary signaling complexes. In addition, FAT1 knockout cell lines generated by CRISPR/Cas9‐mediated genome engineering were more susceptible for death receptor‐mediated apoptosis. Our findings provide evidence for a mechanism to control caspase‐8‐dependent cell death by the atypical cadherin FAT1. These results contribute towards the understanding of effector caspase regulation in physiological conditions.  相似文献   

3.
Regulation of CD95/Fas signaling at the DISC   总被引:1,自引:0,他引:1  
CD95 (APO-1/Fas) is a member of the death receptor (DR) family. Stimulation of CD95 leads to induction of apoptotic and non-apoptotic signaling pathways. The formation of the CD95 death-inducing signaling complex (DISC) is the initial step of CD95 signaling. Activation of procaspase-8 at the DISC leads to the induction of DR-mediated apoptosis. The activation of procaspase-8 is blocked by cellular FLICE-inhibitory proteins (c-FLIP). This review is focused on the role in the CD95-mediated signaling of the death effector domain-containing proteins procaspase-8 and c-FLIP. We discuss how dynamic cross-talk between procaspase-8 and c-FLIP at the DISC regulates life/death decisions at CD95.  相似文献   

4.
Membrane microdomains known as lipid rafts have been shown recently to be involved in Fas signalling and apoptosis in T and B cell lines. Here, we have investigated further the role of lipid rafts in Fas-induced apoptosis in non-transformed human CD4 T cells. We show that Fas-induced apoptosis in CD4 T cells was inhibited by the lipid raft disrupter methyl-beta-cyclodextrin. When lipid rafts were isolated from control and Fas ligand treated cells, we found that a small proportion of Fas was present in the raft fraction in untreated cells and that this was greatly increased upon Fas ligation. The other components of the Death Inducing Signalling Complex (DISC), FADD, and procaspase 8, were also present at higher levels in the raft fraction isolated from Fas ligand treated cells. We conclude that formation of the DISC occurs in lipid rafts and that these membrane microdomains are required for efficient Fas signalling and apoptosis.  相似文献   

5.
Formation of the pro-apoptotic death-inducing signaling complex (DISC) can be initiated in cancer cells via binding of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to its two pro-apoptotic receptors, TRAIL receptor 1 (TRAIL-R1) and TRAIL-R2. Primary components of the DISC are trimerized TRAIL-R1/-R2, FADD, caspase 8 and caspase 10. The anti-apoptotic protein FLIP can also be recruited to the DISC to replace caspase 8 and form an inactive complex. Caspase 8/10 processing at the DISC triggers the caspase cascade, which eventually leads to apoptotic cell death. Besides TRAIL, TRAIL-R1- or TRAIL-R2-selective variants of TRAIL and agonistic antibodies have been designed. These ligands are of interest as anti-cancer agents since they selectively kill tumor cells. To increase tumor sensitivity to TRAIL death receptor-mediated apoptosis and to overcome drug resistance, TRAIL receptor ligands have already been combined with various therapies in preclinical models. In this review, we discuss factors influencing the initial steps of the TRAIL apoptosis signaling pathway, focusing on mechanisms modulating DISC assembly and caspase activation at the DISC. These insights will direct rational design of drug combinations with TRAIL receptor ligands to maximize DISC signaling.  相似文献   

6.
Previous studies by our laboratory have shown that the drug transporter protein P-glycoprotein, P-gp, can specifically inhibit Fas-induced caspase-3 activation and apoptosis. Importantly, inhibition of both caspase-3 activation and cell death could be reversed by pharmacological and antibody inhibitors of P-gp function. However, the molecular mechanisms underpinning P-gp-mediated resistance to Fas-induced cell death and caspase activation remained unknown. We therefore sought to identify the point(s) within the death receptor pathway at which P-gp exerted its inhibitory effect and to determine whether the ATPase activity of P-gp was required. Structure-function analysis determined that ATP hydrolysis was necessary for P-gp to confer resistance to Fas-induced caspase activation and cell death. Importantly, although both FADD and caspase-8 were recruited to the Death Inducing Signal Complex (DISC) in wild-type P-gp expressing cells following Fas ligation, subsequent activation of caspase-8 at the DISC was inhibited. The ability of P-gp to inhibit caspase-8 activation was also ATP dependent. These studies demonstrate that P-gp inhibits Fas-induced caspase-8 activation but not formation of the DISC and that this activity of P-gp is dependent on ATP hydrolysis.  相似文献   

7.
Activation of the cell surface CD95 receptor triggers a cascade of signaling events, including assembly of the death-inducing signaling complex (DISC), that culminate in cellular apoptosis. In this study, we demonstrate a general requirement of receptor internalization for CD95 ligand-mediated DISC amplification, caspase activation and apoptosis in type I cells. Recruitment of DISC components to the activated receptor predominantly occurs after the receptor has moved into an endosomal compartment and blockade of CD95 internalization impairs DISC formation and apoptosis. In contrast, CD95 ligand stimulation of cells unable to internalize CD95 results in activation of proliferative Erk and NF-kappaB signaling pathways. Hence, the subcellular localization and internalization pathways of CD95 play important roles in controlling activation of distinct signaling cascades to determine divergent cellular fates.  相似文献   

8.
The involvement of the death adaptor protein FADD and the apoptosis-initiating caspase-8 in CD95 and TRAIL death signalling has recently been demonstrated by the analysis of the native death-inducing signalling complex (DISC) that forms upon ligand-induced receptor cross-linking. However, the role of caspase-10, the other death-effector-domain-containing caspase besides caspase-8, in death receptor signalling has been controversial. Here we show that caspase-10 is recruited not only to the native TRAIL DISC but also to the native CD95 DISC, and that FADD is necessary for its recruitment to and activation at these two protein complexes. With respect to the function of caspase-10, we show that it is not required for apoptosis induction. In addition, caspase-10 can not substitute for caspase-8, as the defect in apoptosis induction observed in caspase-8-deficient cells could not be rescued by overexpression of caspase-10. Finally, we demonstrate that caspase-10 is cleaved during CD95-induced apoptosis of activated T cells. These results show that caspase-10 activation occurs in primary cells, but that its function differs from that of caspase-8.  相似文献   

9.
The actin cytoskeleton association is required for caspase 8-independent Fas/CD95 receptor internalization, a critical step for an optimal death-inducing signaling complex formation along the endocytic pathway, leading to efficient activation of the caspase cascade and, ultimately, cell death. However, the way in which this initiation phase of Fas receptor signaling is regulated is still unknown. We report herein that, in B cells, upon Fas engagement, the tyrosine phosphatase SHP-1-regulated Vav dephosphorylation, by downmodulating the Fas-ezrin-actin linkage is a fine-tune switch-off mechanism that the cell uses as a way to terminate the receptor internalization, controlling therefore the time and extent of the DISC formation and cell death.  相似文献   

10.
We and others have demonstrated that Fas-mediated apoptosis is a potential therapeutic target for cholangiocarcinoma. Previously, we reported that CaM (calmodulin) antagonists induced apoptosis in cholangiocarcinoma cells through Fas-related mechanisms. Further, we identified a direct interaction between CaM and Fas with recruitment of CaM into the Fas-mediated DISC (death-inducing signalling complex), suggesting a novel role for CaM in Fas signalling. Therefore we characterized the interaction of CaM with proteins recruited into the Fas-mediated DISC, including FADD (Fas-associated death domain)-containing protein, caspase 8 and c-FLIP {cellular FLICE [FADD (Fas-associated death domain)-like interleukin 1beta-converting enzyme]-like inhibitory protein}. A Ca(2+)-dependent direct interaction between CaM and FLIP(L), but not FADD or caspase 8, was demonstrated. Furthermore, a 37.3+/-5.7% increase (n=6, P=0.001) in CaM-FLIP binding was observed at 30 min after Fas stimulation, which returned to the baseline after 60 min and correlated with a Fas-induced increase in intracellular Ca(2+) that reached a peak at 30 min and decreased gradually over 60 min in cholangiocarcinoma cells. A CaM antagonist, TFP (trifluoperazine), inhibited the Fas-induced increase in CaM-FLIP binding concurrent with inhibition of ERK (extracellular-signal-regulated kinase) phosphorylation, a downstream signal of FLIP. Direct binding between CaM and FLIP(L) was demonstrated using recombinant proteins, and a CaM-binding region was identified in amino acids 197-213 of FLIP(L). Compared with overexpression of wild-type FLIP(L) that resulted in decreased spontaneous as well as Fas-induced apoptosis, mutant FLIP(L) with deletion of the CaM-binding region resulted in increased spontaneous and Fas-induced apoptosis in cholangiocarcinoma cells. Understanding the biology of CaM-FLIP binding may provide new therapeutic targets for cholangiocarcinoma and possibly other cancers.  相似文献   

11.
Fas death receptor signalling: roles of Bid and XIAP   总被引:1,自引:0,他引:1  
Fas (also called CD95 or APO-1), a member of a subgroup of the tumour necrosis factor receptor superfamily that contain an intracellular death domain, can initiate apoptosis signalling and has a critical role in the regulation of the immune system. Fas-induced apoptosis requires recruitment and activation of the initiator caspase, caspase-8 (in humans also caspase-10), within the death-inducing signalling complex. In so-called type 1 cells, proteolytic activation of effector caspases (-3 and -7) by caspase-8 suffices for efficient apoptosis induction. In so-called type 2 cells, however, killing requires amplification of the caspase cascade. This can be achieved through caspase-8-mediated proteolytic activation of the pro-apoptotic Bcl-2 homology domain (BH)3-only protein BH3-interacting domain death agonist (Bid), which then causes mitochondrial outer membrane permeabilisation. This in turn leads to mitochondrial release of apoptogenic proteins, such as cytochrome c and, pertinent for Fas death receptor (DR)-induced apoptosis, Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP binding protein with low Pi), an antagonist of X-linked inhibitor of apoptosis (XIAP), which imposes a brake on effector caspases. In this review, written in honour of Juerg Tschopp who contributed so much to research on cell death and immunology, we discuss the functions of Bid and XIAP in the control of Fas DR-induced apoptosis signalling, and we speculate on how this knowledge could be exploited to develop novel regimes for treatment of cancer.  相似文献   

12.
Fas-mediated apoptosis is a crucial cellular event. Fas, the Fas-associated death domain, and caspase 8 form the death-inducing signaling complex (DISC). Activated caspase 8 mediates the extrinsic pathways and cleaves cytosolic BID. Truncated BID (tBID) translocates to the mitochondria, facilitates the release of cytochrome c, and activates the intrinsic pathways. However, the mechanism causing these DISC components to aggregate and form the complex remains unclear. We found that Cav-1 regulated Fas signaling and mediated the communication between extrinsic and intrinsic pathways. Shortly after hyperoxia (4 h), the colocalization and interaction of Cav-1 and Fas increased, followed by Fas multimer and DISC formation. Deletion of Cav-1 (Cav-1-/-) disrupted DISC formation. Further, Cav-1 interacted with BID. Mutation of Cav-1 Y14 tyrosine to phenylalanine (Y14F) disrupted the hyperoxia-induced interaction between BID and Cav-1 and subsequently yielded a decreased level of tBID and resistance to hyperoxia-induced apoptosis. The reactive oxygen species (ROS) scavenger N-acetylcysteine decreased the Cav-1-Fas interaction. Deletion of glutathione peroxidase-2 using siRNA aggravated the BID-Cav-1 interaction and tBID formation. Taken together, these results indicate that Cav-1 regulates hyperoxia/ROS-induced apoptosis through interactions with Fas and BID, probably via Fas palmitoylation and Cav-1 Y14 phosphorylation, respectively.  相似文献   

13.
Ab binding to CD20 has been shown to induce apoptosis in B cells. In this study, we demonstrate that rituximab sensitizes lymphoma B cells to Fas-induced apoptosis in a caspase-8-dependent manner. To elucidate the mechanism by which Rituximab affects Fas-mediated cell death, we investigated rituximab-induced signaling and apoptosis pathways. Rituximab-induced apoptosis involved the death receptor pathway and proceeded in a caspase-8-dependent manner. Ectopic overexpression of FLIP (the physiological inhibitor of the death receptor pathway) or application of zIETD-fmk (specific inhibitor of caspase-8, the initiator-caspase of the death receptor pathway) both specifically reduced rituximab-induced apoptosis in Ramos B cells. Blocking the death receptor ligands Fas ligand or TRAIL, using neutralizing Abs, did not inhibit apoptosis, implying that a direct death receptor/ligand interaction is not involved in CD20-mediated cell death. Instead, we hypothesized that rituximab-induced apoptosis involves membrane clustering of Fas molecules that leads to formation of the death-inducing signaling complex (DISC) and downstream activation of the death receptor pathway. Indeed, Fas coimmune precipitation experiments showed that, upon CD20-cross-linking, Fas-associated death domain protein (FADD) and caspase-8 were recruited into the DISC. Additionally, rituximab induced CD20 and Fas translocation to raft-like domains on the cell surface. Further analysis revealed that, upon stimulation with rituximab, Fas, caspase-8, and FADD were found in sucrose-gradient raft fractions together with CD20. In conclusion, in this study, we present evidence for the involvement of the death receptor pathway in rituximab-induced apoptosis of Ramos B cells with concomitant sensitization of these cells to Fas-mediated apoptosis via Fas multimerization and recruitment of caspase-8 and FADD to the DISC.  相似文献   

14.
Ligation of the death receptor Fas/CD95 activates an apoptotic cascade and plays critical roles during infectious diseases. Previous work has established that infection with the intracellular parasite Toxoplasma gondii renders cells resistant to multiple inducers of apoptosis. However, the effect of T. gondii on the death receptor pathway is poorly characterized. Here we have determined the impact of the parasite on apoptosis in type I cells that transduce Fas/CD95 engagement via the death receptor pathway without the need of a mitochondrial amplification loop. The results have shown that T. gondii significantly reduced Fas/CD95-triggered apoptosis by impairing activation of the initiator caspase 8. Parasitic infection diminished the cellular amount of procaspase 8, resulting in its decreased recruitment to the death-inducing signalling complex and the impaired activation of effector caspases. Remarkably, downregulation of caspase 8 protein in T. gondii-infected cells also occurred in the absence of Fas/CD95 engagement and was associated with the appearance of non-canonical caspase 8 cleavage fragments. Distinct parasite proteins were associated with caspase 8 and its proteolytic fragments. These findings indicate that T. gondii aberrantly processes and finally degrades the initiator caspase 8, thereby, blocking Fas/CD95-mediated apoptosis which signals independently of the apoptogenic function of host cell mitochondria.  相似文献   

15.
Apoptosis in mammalian cells is modulated by extrinsic and intrinsic signaling pathways through the formation of death receptor-mediated death-inducing signaling complex (DISC) and mitochondrial-derived apoptosome, respectively. We found by ultrastructural approaches that the antitumor drug edelfosine induced aggregates of lipid rafts containing Fas/CD95 receptor and Fas-associated death domain-containing protein in leukemic cells. Death receptors together with DISC and apoptosome constituents were recruited in rafts during edelfosine treatment in multiple myeloma cells. This apoptotic response involved caspases-8/-9/-10 that were translocated to rafts. Lipid raft disruption by cholesterol depletion inhibited loss of mitochondrial transmembrane potential, caspase activation and apoptosis, whereas cholesterol replenishment restored these responses. Our data indicate that rafts act as scaffolds where extrinsic and intrinsic apoptotic signaling pathways concentrate, forming clusters of apoptotic signaling molecule-enriched rafts (CASMER), which function as novel supramolecular entities in the triggering of apoptosis, and play an important role in edelfosine-induced apoptosis in blood cancer cells.  相似文献   

16.
New therapies are required for chronic lymphocytic leukemia (CLL), an incurable disease characterized by failure of mature lymphocytes to undergo apoptosis. Activation of cell surface death receptors, such as via TRAIL receptor ligation, may provide a novel therapeutic target for various malignancies. However, CLL and other lymphoid malignancies are resistant to TRAIL. We report that low concentrations of histone deacetylase (HDAC) inhibitors, such as depsipeptide, which alone failed to induce apoptosis, markedly sensitize CLL cells and other primary lymphoid malignancies to TRAIL-induced apoptosis. These combinations caused little or no toxicity to normal lymphocytes. HDAC inhibitors sensitized resistant cells to TRAIL-induced apoptosis by facilitating formation of an active death-inducing signalling complex (DISC), leading to the rapid activation of caspase-8. The facilitated DISC formation also occurred in the absence of TRAIL-R2 upregulation. Thus, the combination of HDAC inhibitors and TRAIL may be valuable in the treatment of various hemopoietic malignancies.  相似文献   

17.
We have previously demonstrated that the antagonists of calmodulin (CaM) induce apoptosis of cholangiocarcinoma cells partially through Fas-mediated apoptosis pathways. Recently, CaM has been shown to bind to Fas, which is regulated during Fas or CaM antagonist-mediated apoptosis in Jurkat cells and osteoclasts. Accordingly, the present studies were designed to determine whether Fas interacts with CaM in cholangiocarcinoma cells and to elucidate its role in regulating Fas-mediated apoptosis. CaM bound to Fas in cholangiocarcinoma cells. CaM was identified in the Fas-mediated death inducing signaling complex (DISC). The amount of CaM recruited into the DISC was increased after Fas-stimulation, a finding confirmed by immunofluorescent analysis that demonstrated increased membrane co-localization of CaM and Fas upon Fas-stimulation. Consistently, increased Fas microaggregates in response to Fas-stimulation were found to bind to CaM. Fas-induced recruitment of CaM into the DISC was inhibited by the Ca(2+) chelator, EGTA, and the CaM antagonist, trifluoperazine (TFP). TFP decreased DISC-induced cleavage of caspase-8. Further, inhibition of actin polymerization, which has been demonstrated to abolish DISC formation, inhibited the recruitment of CaM into the DISC. These results suggest an important role of CaM in mediating DISC formation, thus regulating Fas-mediated apoptosis in cholangiocarcinoma cells. Characterization of the role of CaM in Fas-mediated DISC formation and apoptosis signaling may provide important insights in the development of novel therapeutic targets for cholangiocarcinoma.  相似文献   

18.
Pseudomonas aeruginosa infection is a serious complication in immunocompromised individuals and in patients with cystic fibrosis. We have previously shown that the type III secreted effector ExoS triggers apoptosis in various cultured cell lines via its ADP-ribosyltransferase (ADPRT) activity. The apoptosis process was further shown to involve intrinsic signalling pathway requiring c-Jun N-terminal kinase (JNK)-initiated mitochondrial pathway. In the present study, we investigated the role of Fas pathway activation in P. aeruginosa-induced apoptosis. P. aeruginosa infection resulted in caspase 8 cleavage in HeLa cells, which was inhibited by overexpression of a dominant negative version of Fas-associated death domain (FADD), suggesting that Fas pathway was activated. In fact, confocal laser scanning microscopy showed that P. aeruginosa induced clustering of FasR. In addition, the ADPRT activity of the ExoS was required for the induction of FasR clustering and caspase 8 cleavage. However, blocking the FasR-FasL interaction by antagonistic antibodies to FasR or to FasL had no effect on P. aeruginosa-induced caspase 8 and caspase 3 activation, neither did the silencing of FasR by small interfering RNA (siRNA), suggesting that caspase 8 activation through the FADD bypasses FasR/FasL-mediated signalling. Thus, FADD-mediated caspase 8 activation involves intracellular ExoS in an ADPRT-dependent manner. Furthermore, silencing of caspase 8 by siRNA did not interfere with P. aeruginosa-induced apoptosis, whereas it rendered HeLa cells markedly increased resistance towards FasL-induced apoptosis. In conclusion, our findings indicate that ExoS of P. aeruginosa induces apoptosis through a mechanism that is independent of Fas receptor/caspase 8 pathway.  相似文献   

19.
Activation of protein kinase C (PKC) triggers cellular signals that inhibit Fas/CD95-induced cell death in Jurkat T-cells by poorly defined mechanisms. Previously, we have shown that one effect of PKC on Fas/CD95-dependent cell death occurs through inhibition of cell shrinkage and K(+) efflux (Gómez-Angelats, M., Bortner, C. D., and Cidlowski, J. A. (2000) J. Biol. Chem. 275, 19609-19619). Here we report that PKC alters Fas/CD95 signaling from the plasma membrane to the activation of caspases by exerting a profound action on survival/cell death decisions. Specific activation of PKC with 12-O-tetradecanoylphorbol-13-acetate or bryostatin-1 induced translocation of PKC from the cytosol to the membrane and effectively inhibited cell shrinkage and cell death triggered by anti-Fas antibody in Jurkat cells. In contrast, inhibition of classical PKC isotypes with G?6976 exacerbated the effect of Fas activation on both apoptotic volume decrease and cell death. PKC activation/inhibition did not affect anti-Fas antibody binding to the cell surface, intracellular levels of FADD (Fas-associated protein with death domain), or c-FLIP (cellular FLICE-like inhibitory protein) expression. However, processing/activation of both caspase-8 and caspase-3 and BID cleavage were markedly blocked upon PKC activation and, conversely, were augmented during PKC inhibition, suggesting a role for PKC upstream of caspase-8 processing and activation. Analysis of death-inducing signaling complex (DISC) formation was carried out to examine the influence of PKC on recruitment of both FADD and procaspase-8 to the Fas receptor. PKC activation blocked FADD recruitment and caspase-8 activation and thus DISC formation in both type I and II cells. In contrast, inhibition of classical PKCs promoted the opposite effect on the Fas pathway by rapidly increasing FADD recruitment, caspase-8 activation, and DISC formation. Together, these data show that PKC finely modulates Fas/CD95 signaling by altering the efficiency of DISC formation.  相似文献   

20.
Apoptosis triggered by the death receptor CD95 (APO-1 or Fas) is pivotal for the homeostasis of the immune system. We investigated differential effects of glutathione depletion on CD95-triggered apoptosis in T and B cell lines as well as the glutathione dependence of caspase-8 activation. In B lymphoblastoid SKW6.4 cells, CD95-mediated apoptosis was prevented upstream of caspase-8 activation and caspase-3-like activity after acute glutathione depletion by diethyl maleate or cis-chloro-dinitrobenzene. Immunoprecipitation of the death-inducing signaling complex (DISC) revealed that the DISC was still formed in the glutathione-depleted state. The first cleavage step of procaspase-8 activation at the DISC, however, was inhibited. Accordingly, under cell-free conditions, radiolabeled procaspase-8 was processed at the immunoprecipitated DISC only after the addition of exogenous dithiothreitol or reduced glutathione. We also observed suppression of CD95-mediated apoptosis in glutathione-depleted CEM and H9 cells. Notably, Jurkat cells still died upon CD95 engagement under this condition, displaying incomplete nuclear fragmentation and a partial switch to necrosis; this may be explained by reduced cytochrome c/dATP-mediated caspase activation observed in cytosol from glutathione-depleted Jurkat cytosol. Our data indicate that the activation of caspase-8 at the DISC and hence CD95-mediated apoptosis induction shows a cell-specific requirement for intracellular glutathione.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号