首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photosystem I reaction centers were isolated from mesophyll and bundle-sheath chloroplasts of the C4 maize plant. Both preparations were found to be free of chlorophyll b and to have the same spectral properties and chlorophyll/P700 ratio as photosystem I reaction centers isolated from C3 plants. Photosystem I reaction centers from both mesophyll and bundle sheath were found to consist of six subunits with apparent molecular masses of about 70 kDa, 20 kDa, 17 kDa, 16 kDa, 10 kDa and 8 kDa, corresponding to photosystem I reaction center subunits I, II, IV, V, VI and VII of spinach, as tested by their immunological cross-reactivity with antibody raised against the respective spinach subunits. No cross-reactivity was found with antibodies raised against subunit III of spinach, either in whole thylakoids or purified reaction centers of both bundle-sheath and mesophyll chloroplasts. It is concluded that photosystem I reaction centers of bundle-sheath and mesophyll thylakoids of maize are identical and lack the polypeptide corresponding to subunit III present in all C3 plants so far tested.  相似文献   

2.
The organization of the electron transport components in mesophyll and bundle sheath chloroplasts of Zea mays was investigated. Grana-containing mesophyll chloroplasts (chlorophyll a to chlorophyll b ratio of about 3.0) possessed the full complement of the various electron transport components, comparable to chloroplasts from C3 plants. Agranal bundle sheath chloroplasts (Chl aChl b > 5.0) contained the full complement of photosystem (PS) I and of cytochrome (cyt) f but lacked a major portion of PS II and its associated Chl ab light-harvesting complex (LHC), and most of the cyt b559. The kinetic analysis of system I photoactivity revealed that the functional photosynthetic unit size of PS I was unchanged and identical in mesophyll and bundle sheath chloroplasts. The results suggest that PS I is contained in stroma-exposed thylakoids and that it does not receive excitation energy from the Chl ab LHC present in the grana. A stoichiometric parity between PS I and cyt f in mesophyll and bundle sheath chloroplasts indicates that biosynthetic and functional properties of cyt f and P700 are closely coordinated. Thus, it is likely that both cyt f and P700 are located in the membrane of the intergrana thylakoids only. The kinetic analysis of PS II photoactivity revealed the absence of PS IIαfrom the bundle sheath chloroplasts and helped identify the small complement of system II in bundle sheath chloroplasts as PS IIβ. The distribution of the main electron transport components in grana and stroma thylakoids is presented in a model of the higher plant chloroplast membrane system.  相似文献   

3.
The structure and supramolecular assembly of the soybean photosystem 1 (PS 1) chlorophyll a/b-binding antenna (LHC 1) was examined. We identified the subunit composition of LHC 1 in soybean and followed the accumulation of individual subunits during light-induced assembly. We observed four LHC 1 subunits, at 23, 22, 21 and 20.5 kDa, obtained partial sequence information by amino-terminal sequence analysis, and classified the 20.5, 22, and 21 kDa subunits as being encoded by type I, II, and IV chlorophyll a/b binding protein genes, respectively. Antisera against LHC 1 subunits were used to follow the accumulation of individual subunits during the light-initiated transition from etioplast to chloroplast. Several points are noteworthy. First, monospecific antibody against the 22 kDa subunit decorated a 25 kDa peptide in etiolated tissue, which declined during maturation. This decline correlated with the light-induced appearance of mature 22 kDa peptide, suggesting a precursor/product relationship. Second, the same antibody identified a 22 kDa protein in mature corn, but not a larger band in etiolated corn, suggesting that LHC 1 accumulation is regulated differently between species before the onset of chlorophyll biosynthesis. Third, the mature 22 kDa subunit appeared somewhat later than the other LHC 1 peptides during greening, implying that this subunit is less intimately associated with the PS1 core than are the subunits appearing earlier in development.  相似文献   

4.
The phylogenetic distribution of photosystem I-associated polypeptides was assessed by immunoblotting algal thylakoid membrane polypeptides with antisera generated against the P700-chlorophyll a protein (CC I) and a photosystem I light-harvesting chlorophyll-protein (LHC Ib). Polypeptides cross-reacting with the CC I apoprotein were found in 20 species representing four classes of unicellular algae. Polypeptides sharing antigenicity with spinach LHC Ib were observed only in algal species containing chlorophyll b. Tetraselmis spp. (Pleurastrophyceae), rich in chlorophyll b (Chl a:b 1.2), exhibited marked heterogeneity in the composition of their CC I and LHC Ib cross-reactive polypeptides. When immunoblotted with antisera against CC I, all Tetraselmis clones examined exhibited a 25-kD polypeptide in greater abundance than the 58-kD CC I apoprotein characteristic of higher plants and other green algal thylakoids. Three Tetraselmis clones (RG 6, RG 11, and RG 12) exhibited an 81-kD polypeptide with strong antigenicity toward the LHC Ib antisera, in contrast to the 17- to 24-kD cross-reactive polypeptides found in spinach, green algae, and one Tetraselmis clone (RG 5). Associated with the unique photosystem I polypeptide composition in Tetraselmis spp., Chl: P700 ratios for the group are 2–5 times greater than those observed for higher plants or other green algae. The chlorophyll b enrichment, unusual composition of photosystem I cross-reactive polypeptides, and heterogeneity of these polypeptides within isolates of Tetraselmis might make this genus useful for investigations of the functional organization of chlorophyll b in light-harvesting systems. These features also support the view of an alternative phyletic origin for the Pleurastrophyceae.  相似文献   

5.
The light-harvesting antenna of barley photosystem I (LHCI) was isolated from native photosystem I (PSI) complexes and fractionated into three pigment-protein subcomplexes using two consecutive rounds of green gel electrophoresis. Each complex showed a characteristic polypeptide composition and low-temperature fluorescence emission spectrum; they were designated as LHCI-730, LHCI-680A and LHCI-680B. Their four apoproteins of 21, 22, 23 and 25 kDa were purified and NH2-terminal sequences were determined; in the case of the NH2-terminally blocked 25-kDa protein, an internal sequence was obtained after cleavage with endoproteinase Lys-C. This made possible an assignment of the four proteins to the four types (I-IV) of genes coding for chlorophyll a/b proteins of PSI (cab or lha genes). The LHCI-730 complex was isolated as a heterodimer composed of the 21-kDa (LHCI type IV) and the 22-kDa (LHCI type I) polypeptides. Each LHCI-680 complex had a single apoprotein. LHCI-680A consisted of the 25-kDa (LHCI type III) and LHCI-680B of the 23-kDa (LHCI type II) polypeptides. LHCI-680B was associated with the non-pigmented PSI-E subunit, indicating that this protein may function in the binding of this antenna to the reaction centre.  相似文献   

6.
The effects of protein phosphorylation and cation depletion on the electron transport rate and fluorescence emission characteristics of photosystem I at two stages of chloroplast development in light-grown wheat leaves are examined. The light-harvesting chlorophyll a/b protein complex associated with photosystem I (LHC I) was absent from the thylakoids at the early stage of development, but that associated with photosystem II (LHC II) was present. Protein phosphorylation produced an increase in the light-limited rate of photosystem I electron transport at the early stage of development when chlorophyll b was preferentially excited, indicating that LHC I is not required for transfer of excitation energy from phosphorylated LHC II to the core complex of photosystem I. However, no enhancement of photosystem I fluorescence at 77 K was observed at this stage of development, demonstrating that a strict relationship between excitation energy density in photosystem I pigment matrices and the long-wavelength fluorescence emission from photosystem I at 77 K does not exist. Depletion of Mg2+ from the thylakoids produced a stimulation of photosystem I electron transport at both stages of development, but a large enhancement of the photosystem I fluorescence emission was observed only in the thylakoids containing LHC I. It is suggested that the enhancement of PS I electron transport by Mg2+-depletion and phosphorylation of LHC II is associated with an enhancement of fluorescence at 77 K from LHC I and not from the core complex of PS I.  相似文献   

7.
The polypeptide compositions of the light-harvesting chlorophyll a/b-protein complex (LHC) and of the complex of photosystem I (CP I) denatured with 2% beta-mercaptoethanol and 8 M urea was investigated. The LHC complex consists of two major (23 and 21 KD) and two minor (19 and 15 KD) polypeptides; the CP I complex consists of one major (23 KD) and three minor (19, 16 and 14 KD) proteins. The 70 KD protein which was considered to be characteristic for CP I is most likely an oligomer made up of three subunits (23 KD) and other minor protein components.  相似文献   

8.
9.
A highly purified light-harvesting pigment-protein complex (LHC) was obtained by fractionation of cation-depleted chloroplast membranes using the nonionic detergent, Triton X-100. The isolated LHC had a chlorophyll ab ratio of 1.2 and exhibited no photochemical activity. SDS-polyacrylamide gel electrophoresis of the LHC revealed three polypeptides in the molecular weight classes of 23, 25, and 30 × 103. Antibodies were prepared against the LHC and their specificity was established. The effect of the α-LHC (antibodies to LHC) on salt-mediated changes in PS I and PS II photochemistry, Chl α fluorescence inductions, and 77 °K fluorescence emission spectra was investigated. The results show that: (i) The Mg2+-induced 20% decrease in photosystem I (PS I) quantum yield observed in control chloroplasts was blocked by the presence of the α-LHC antibody, (ii) The Mg2+-induced 70% increase in photosystem II (PS II) quantum yield of control chloroplasts was reduced 35% for plastids in the presence of α-LHC antibody, (iii) The Mg2+-induced increase in room-temperature variable fluorescence was reduced 60% by α-LHC antibody, (iv) The Mg2+-induced increase in the F685F730 emission peak ratio at 77 °K was inhibited 50% in the presence of α-LHC antibody. These results provide direct evidence for the involvement of the light-harvesting complex in cation regulation of energy redistribution between the photosystems. The fact that the α-LHC antibody does not fully block Mg2+-induced PS II increases or chlorophyll fluorescence increases supports the concept that Mg2+ has two mechanisms of action: one effect on energy distribution and a second direct effect on photosystem II centers.  相似文献   

10.
In vitro translation of polyA+ mRNAs isolated from purified maize bundle sheath and mesophyll cells results in the production of distinctive, cell-specific polypeptides. Immunoprecipitation experiments show that translatable polyA+ mRNAs for phosphoenolpyruvate carboxylase (PEPC), pyruvate orthophosphate dikinase (PPDK) and NADP-malate dehydrogenase (MDH) are prominent in mesophyll but not bundle sheath cells. On the contrary, those for sedoheptulose-1,7-bisphosphatase (SBP), fructose-1,6-bisphosphatase (FBP), NADP-malic enzyme (ME) and the small subunit of ribulose-1,5-bisphosphate carboxylase (RuBPC SS) are present only in bundle sheath cells. Moreover, polyA+ mRNAs encoding the 33 kD, 23 kD and 16 kD polypeptides of the oxygen-evolving complex (OE33, OE23 and OE16) and the light-harvesting chlorophyll a/b binding protein of photosystem II (LHCP II) are much more abundant in mesophyll than in bundle sheath cells. Northern blot analyses with cDNA clones of PEPC, PPDK, ME, RuBPC SS, OE33, OE23, OE16 and LHCP II are consistent with the conclusion that the cell-specific expression of these genes is regulated at the RNA level. The RNA level differences are especially dramatic in dark-grown maize seedlings after illumination for 24 h.  相似文献   

11.
Immunoblotting was used to probe the reactivity of rabbit polyclonal antibodies against PS1I and PSI light-harvesting chlorophyll a/b-proteins of spinach ( Spinacea oleracea L.) with the light-harvesting complexes of a siphonaceous marine alga, Codium , that have more chlorophyll b, siphonaxanthin and siphonein instead of the lutein. The spinach LHCII antibodies cross-reacted only with the apoproteins of Cod-ium LHCII. Antisera against the spinach LHCI apoproteins showed strong affinity for the apoproteins of Codium LHCI, and also reacted with the polypeptides of spinach LHCII and Codium LHCII. Our results indicate some similarities in the amino acid sequences between the Codium siphonaxanthin-Chl a/fe-proteins of LHCII and LHCI and the corresponding spinach lutein-chlorophyll a/b-proteins.  相似文献   

12.
13.
The regulation by light of the photosynthetic apparatus, and composition of light-harvesting complexes in mesophyll and bundle sheath chloroplasts was investigated in maize. Leaf chlorophyll content, level of plastoquinone, PSI and PSII activities and Lhc polypeptide compositions were determined in plants grown under high, moderate and low irradiances. Photochemical efficiency of PSII, photochemical fluorescence quenching and non-photochemical fluorescence quenching over a range of actinic irradiances were also determined, using chlorophyll a fluorescence analysis. Acclimation of plants to different light conditions caused marked changes in light-harvesting complexes, LHCI and LHCII, and antenna complexes were also reorganized in these types of chloroplasts. The level of LHCII increased in plants grown in low light, even in agranal bundle sheath chloroplasts where the amount of PSII was strongly reduced. Irradiance also affected LHCI complex and the number of structural polypeptides, in this complex, generally decreased in chloroplasts from plants grown under lower light. Surprisingly moderate and low irradiances during growth do not affect the light reaction and fluorescence parameters of plants but generated differences in composition of light-harvesting complexes in chloroplasts. On the other hand, the changes in photosynthetic apparatus in plants acclimated to high light, resulted in a higher efficiency of photosynthesis. Based on these observations we propose that light acclimation to high light in maize is tightly coordinated adjustment of light reaction components/activity in both mesophyll and bundle sheath chloroplasts. Acclimation is concerned with balancing light utilization and level of the content of LHC complexes differently in both types of chloroplasts.  相似文献   

14.
We have exploited the positional gradient of cellular differentiation in Zea mays leaves to study the accumulation of mRNAs encoding subunits of the two CO2-fixing enzymes and the major chlorophyll-binding protein. These three proteins are differentially compartmentalized in the two photosynthetically active cell types of the leaf. Previous studies have shown that accumulation of the two carboxylases commences 2 to 4 cm from the base of the leaf (Mayfield SP, WC Taylor Planta 161: 481-486) at a position where bundle sheath and mesophyll cells show morphological evidence of maturation. The light-harvesting chlorophyll a/b protein accumulates progressively from the leaf base, as does its mRNA, in spite of its localization in mesophyll cells after cellular differentiation occurs. While small quantities of phosphoenolpyruvate carboxylase mRNA are detectable in the basal region of the leaf, significant mRNA accumulation is coincident with that of the polypeptide at 4 to 6 cm from the leaf base, the region where bundle sheath and mesophyll cells exhibit fully differentiated morphologies. mRNAs encoding the small and large subunits of ribulose 1,5-bisphosphate carboxylase accumulate to significant levels before bundle sheath cells are fully differentiated and before their polypeptides are detectable. Cytological examination indicates that this is the position at which the maturation of intermediate vascular bundles is first evident. Cytosolically localized small subunit mRNA and chloroplast-localized large subunit mRNA are complexed with polyribosomes at all positions of the leaf.  相似文献   

15.
The marine chlorophyte Dunaliella tertiolecta Butcher responds to a one-step transition from a high growth irradiance level (700 micromoles quanta per square meter per second) to a low growth irradiance level (70 micromoles quanta per square meter per second) by increasing the total amount of light-harvesting chlorophyll (Chl) a/b binding protein associated with photosystem II (LHC II), and by modifying the relative abundance of individual LHC II apoproteins. When high light-adapted cells were incubated with gabaculine, which inhibits Chl synthesis, and transferred to low light, the LHC II apoproteins were still synthesized and the 35S-labeled LHC II apoproteins remained stable after a 24 hour chase. These results suggest that Chl synthesis is not required for stability of the LHC II apoproteins in this alga. However, when the control cells are transferred from high light to low light, the amount of the four LHC II apoproteins per cell increases, whereas it does not in the presence of gabaculine. These results suggest that Chl synthesis is required for a photoadaptive increase in the cellular level of LHC II.  相似文献   

16.
Antibodies were raised against individual polypeptides of the oxygen-evolving photosystem II (PSII) complex from mesophyll chloroplasts of Vicia faba (Long Pod). These antibodies were used to probe immunologically for the presence of the main structural components of the PSII complex in guard cell chloroplasts, using both immunofluorescence microscopy and Western blotting. Immunofluorescence of epidermal peels with antibodies raised against the extrinsic 33 kilodalton polypeptide, as well as the 47 and the 44 kilodalton subunits and the light-harvesting chlorophyll a/b protein, resulted in intense fluorescence indicating the presence of these polypeptide components in guard cell chloroplasts. Results obtained with Western blot analysis showed that the relative amounts of the 33 kilodalton and light-harvesting complex protein polypeptides are between 60 and 80% of that found in mesophyll cells (on chlorophyll basis). These results provide evidence for the existence of structural components associated with PSII activity in guard cell similar to those of mesophyll chloroplasts.  相似文献   

17.
Anna Drozak  El?bieta Romanowska 《BBA》2006,1757(11):1539-1546
The regulation by light of the photosynthetic apparatus, and composition of light-harvesting complexes in mesophyll and bundle sheath chloroplasts was investigated in maize. Leaf chlorophyll content, level of plastoquinone, PSI and PSII activities and Lhc polypeptide compositions were determined in plants grown under high, moderate and low irradiances. Photochemical efficiency of PSII, photochemical fluorescence quenching and non-photochemical fluorescence quenching over a range of actinic irradiances were also determined, using chlorophyll a fluorescence analysis. Acclimation of plants to different light conditions caused marked changes in light-harvesting complexes, LHCI and LHCII, and antenna complexes were also reorganized in these types of chloroplasts. The level of LHCII increased in plants grown in low light, even in agranal bundle sheath chloroplasts where the amount of PSII was strongly reduced. Irradiance also affected LHCI complex and the number of structural polypeptides, in this complex, generally decreased in chloroplasts from plants grown under lower light. Surprisingly moderate and low irradiances during growth do not affect the light reaction and fluorescence parameters of plants but generated differences in composition of light-harvesting complexes in chloroplasts. On the other hand, the changes in photosynthetic apparatus in plants acclimated to high light, resulted in a higher efficiency of photosynthesis. Based on these observations we propose that light acclimation to high light in maize is tightly coordinated adjustment of light reaction components/activity in both mesophyll and bundle sheath chloroplasts. Acclimation is concerned with balancing light utilization and level of the content of LHC complexes differently in both types of chloroplasts.  相似文献   

18.
Summary The repartition of light-harvesting complex (LHC) and photosystem I (PS I) complex has been examined in isolated plastids ofFucus serratus by immunocytochemical labelling. LHC is distributed equally all along the length of thylakoid membranes, without any special repartition in the appressed membranes of the three associated thylakoids ofFucus. PS I is present on all the thylakoid membranes, but the external membranes of the three associated thylakoids are largely enriched relatively to the inner ones. This specific repartition of PSI on non-appressed membranes can be compared to the localization of PSI on stroma thylakoid membranes of higher plants and green algae. Consequently, although they share some common features with those of higher plants and green algae, the appressions of thylakoids in brown algae has neither the same structure nor the same functional role as typical grana stacked membranes in the repartition of the harvested energy.Abbreviations BSA bovine serum albumin - GAR goat anti-rabbit immunoglobulin G - LHC light-harvesting complex - PBS phosphatebuffered saline - PS I photosystem I - PS II photosystem II  相似文献   

19.
The carotenoid zeaxanthin has been implicated in a nonradiative dissipation of excess excitation energy. To determine its site of action, we have examined the location of zeaxanthin within the thylakoid membrane components. Five pigment-protein complexes were isolated with little loss of pigments: photosystem I (PSI); core complex (CC) I, the core of PSI; CC II, the core of photosystem II (PSII); light-harvesting complex (LHC) IIb, a trimer of the major light-harvesting protein of PSII; and LHC IIa, c, and d, a complex of the monomeric minor light-harvesting proteins of PSII. Zeaxanthin was found predominantly in the LHC complexes. Lesser amounts were present in the CCs possibly because these contained some extraneous LHC polypeptides. The LHC IIb trimer and the monomeric LHC II a, c, and d pigment-proteins from dark-adapted plants each contained, in addition to lutein and neoxanthin, one violaxanthin molecule but little antheraxanthin and no zeaxanthin. Following illumination, each complex had a reduced violaxanthin content, but now more antheraxanthin and zeaxanthin were present. PSI had little or no neoxanthin. The pigment content of LHC I was deduced by subtracting the pigment content of CC I from that of PSI. Our best estimate for the carotenoid content of a LHC IIb trimer from dark-adapted plants is one violaxanthin, two neoxanthins, six luteins, and 0.03 mol of antheraxanthin per mol trimer. The xanthophyll cycle occurs mainly or exclusively within the light-harvesting antennae of both photosystems.  相似文献   

20.
Distribution of the major light-harvesting chlorophyll a/b-protein (LHCII) and its mRNA within bundle sheath and mesophyll cells of maize (Zea mays L.) was studied using in situ immunolocalization and hybridization, respectively. In situ hybridization with specific LHCII RNA probes from maize and Lemna gibba definitively shows the presence of high levels of mRNA for LHCII in both bundle sheath cells and mesophyll cells. In situ immuno-localization studies, using an LHCII monoclonal antibody, demonstrate the presence of LHCII polypeptides in chloroplasts of both cell types. The polypeptide composition of LHCII and the amount of LHCII in bundle sheath cells are different from those in mesophyll cells. Both mesophyll and bundle sheath chloroplasts can take up, import and process the in vitro transcribed and translated LHCII precursor protein from L. gibba. Although bundle sheath chloroplasts incorporate LHCII into the pigmented light-harvesting complex, the efficiency is lower than that in mesophyll chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号