首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 451 毫秒
1.
We reported previously that egg membrane rafts serve as a subcellular microdomain for sperm-dependent tyrosine kinase signaling in Xenopus fertilization. Moreover, we demonstrated that raft-associated Src tyrosine kinase was activated by sperm in vitro. Here we show that egg rafts incubated with sperm or hydrogen peroxide (H2O2) can promote Src-dependent phosphorylation of phospholipase Cgamma (PLCgamma) and transient calcium release in the extracts of unfertilized Xenopus eggs. In vivo egg activation by sperm or H2O2 also promotes tyrosine phosphorylation and raft-translocalization of PLCgamma. Immunodepletion of PLCgamma from the egg extracts inhibits the raft-dependent calcium release. Rafts prepared from H2O2-activated eggs also promote Src-dependent dephosphorylation of p42 mitogen-activated protein kinase and cell cycle transition from metaphase II to interphase in egg extracts. PLCgamma phosphorylation and calcium release in egg extracts can be promoted by rafts prepared from COS-7 cells expressing the Xenopus Src gene. These results demonstrate that the signaling events elicited by fertilization in Xenopus eggs can be reconstituted in vitro. The development of such experimental platforms will allow us to dissect the molecular mechanism of sperm-dependent activation of raft-associated Src and subsequent up-regulation of PLCgamma and egg activation machinery in Xenopus eggs.  相似文献   

2.
Fertilization is accompanied by a rapid and transient calcium release in eggs, which is required for the onset of zygotic developmental program or 'egg activation'. Recently, it was found that Src family tyrosine kinase (SFK)-dependent phospholipase C (PLC) activity is necessary for the calcium transience in fertilized Xenopus eggs. The present study demonstrates that hydrogen peroxide (H2O2) stimulates protein-tyrosine phosphorylation in Xenopus eggs, which occurs primarily in the egg cortex of the animal hemisphere as revealed by indirect immunofluorescence study. Egg SFK was found to be upregulated by H2O2 while the SFK-specific inhibitor PP1 effectively blocked H2O2-induced tyrosine phosphorylation. As in fertilized eggs, PLCgamma, but not Shc, was tyrosine-phosphorylated in H2O2-treated eggs. H2O2 also caused inositol 1,4,5-trisphosphate (IP3) production and sustained calcium release. After limited application of H2O2, elevated SFK activity and tyrosine phosphorylation were quickly reversed. Under such conditions, eggs showed cortical contraction and dephosphorylation of p42 MAP kinase, both of which are indicative of egg activation. These egg activation events, as well as H2O2-induced IP3 production and calcium release, were sensitive to PP1 and PLC inhibitor U-73122. Together, the present study demonstrated that H2O2 can mimic, at least in part, early events of Xenopus egg activation that require an SFK-dependent PLC pathway.  相似文献   

3.
We previously reported that in rat duodenal cells (enterocytes), parathyroid hormone (PTH [1-34]: PTH) stimulates the hydrolysis of polyphosphoinositides by phospholipase C (PLC), generating the second messengers inositol trisphosphate (IP(3)) and diacylglycerol (DAG) and that this mechanism is severely altered in old animals. In the present study, we show that PTH [1-34]-dependent IP(3) release in young rats was blocked to a great extent by an antibody against guanine nucleotide binding protein Galphaq/11, indicating that the hormone activates a beta isoform of PLC coupled to the alpha subunit of Gq/11. In addition, PTH rapidly (within 30 s, with maximal effects at 1 min) stimulated tyrosine phosphorylation of PLCgamma in a dose-dependent fashion (10(-10)-10(-7) M). The hormone response was specific as PTH [7-34] was without effects. The tyrosine kinase inhibitors, genistein (100 microM) and herbimycin (2 microM), suppressed PTH-dependent PLCgamma tyrosine phosphorylation. Stimulation of PLCgamma tyrosine phosphorylation by PTH [1-34] greatly decreased with ageing. PP1 (10 microM), a specific inhibitor of the Src family of tyrosine kinases, completely abolished PLCgamma phosphorylation. The hormone-induced Src tyrosine dephosphorylation, a major mechanism of Src activation, an effect that was blunted in old animals. These results indicate that in rat enterocytes PTH generates IP(3) mainly through G-protein-coupled PLCbeta and stimulates PLCgamma phosphorylation via the nonreceptor tyrosine kinase Src. Impairment of PTH activation of both PLC isoforms upon ageing may result in abnormal hormone regulation of cell Ca(2+) and proliferation in the duodenum.  相似文献   

4.
Different cellular signal transduction cascades are affected by environmental stressors (UV-radiation, gamma-irradiation, hyperosmotic conditions, oxidants). In this study, we examined oxidative stress-evoked signal transduction pathways leading to activation of STATs in A431 carcinoma cells. Oxidative stress, initiated by addition of H2O2 (1-2 mM) to A431 cells, activates STAT3 and, to a lesser extent, STAT1 in dose- and time-dependent manner. Maximum phosphorylation levels were observed after a 2 minutes stimulation at 1-2 mM H2O2. Phosphorylation was blocked by AG1478, a pharmacological inhibitor of the epidermal growth factor receptor tyrosine kinase, implicating intrinsic EGF receptor tyrosine kinase in this process. Consistent with this observation, H2O2-stimulated EGFR tyrosine phosphorylation was abolished by specific Src kinase family inhibitor CGP77675, implicating Src in H2O2-induced EGFR activation. An essential role for Src and JAK2 in STATs activation was suggested by three findings. 1. Src kinase family inhibitor CGP77675 blocked STAT3 and STAT1 activation by H2O2 in a concentration-dependent manner. 2. In Src-/-fibroblasts, activation of both STAT3 and STAT1 by H2O2 was significantly attenuated. 3. Inhibiting JAK2 activity with the specific inhibitor AG490 reduced the level of H2O2-induced STAT3 phosphorylation, but not STAT1 in A431 cells. These data show essential roles for Src and JAK2 inactivation of STAT3. In contrast, H2O2-mediated activation of STAT1 requires only Src kinase activity. Herein, we postulate also that H2O2-induced STAT activation in carcinoma cells involves Src-dependent EGFR transactivation.  相似文献   

5.
In a previous study (K.-I. Sato et al., 1999, Dev. Biol. 209, 308-320), we presented evidence that a Src-related protein-tyrosine kinase (PTK), named Xyk, may act upstream of the calcium release in fertilization of the Xenopus egg. In the present study, we examined whether PTK activation of phospholipase Cgamma (PLCgamma) plays a role in the fertilization-induced calcium signaling. Immunoprecipitation studies show that Xenopus egg PLCgamma is tyrosine phosphorylated and activated within a few minutes after fertilization but not after A23187-induced egg activation. Consistently, we observed a fertilization-induced association of PLCgamma with Xyk activity that was not seen in A23187-activated eggs. A Src-specific PTK inhibitor, PP1, blocked effectively the fertilization-induced association of PLCgamma with Xyk activity and up-regulation of PLCgamma, when microinjected into the egg. In addition, a PLC inhibitor, U-73122, inhibited sperm-induced inositol 1,4,5-trisphosphate production and the calcium transient and subsequent calcium-dependent events such as cortical contraction, elevation of fertilization envelope, and tyrosine dephosphorylation of p42 MAP kinase, all of which were also inhibited by PP1. On the other hand, A23187 could cause the calcium response and calcium-dependent events in eggs injected with PP1 or U-73122. These results support the idea that Xenopus egg fertilization requires Src-family PTK-dependent PLCgamma activity that acts upstream of the calcium-dependent signaling pathway.  相似文献   

6.
Tyrosine phosphorylation of phospholipase Cgamma2 (PLCgamma2) is a crucial activation switch that initiates and maintains intracellular calcium mobilization in response to B cell antigen receptor (BCR) engagement. Although members from three distinct families of non-receptor tyrosine kinases can phosphorylate PLCgamma in vitro, the specific kinase(s) controlling BCR-dependent PLCgamma activation in vivo remains unknown. Bruton's tyrosine kinase (Btk)-deficient human B cells exhibit diminished inositol 1,4,5-trisphosphate production and calcium signaling despite a normal inducible level of total PLCgamma2 tyrosine phosphorylation. This suggested that Btk might modify a critical subset of residues essential for PLCgamma2 activity. To evaluate this hypothesis, we generated site-specific phosphotyrosine antibodies recognizing four putative regulatory residues within PLCgamma2. Whereas all four sites were rapidly modified in response to BCR engagement in normal B cells, Btk-deficient B cells exhibited a marked reduction in phosphorylation of the Src homology 2 (SH2)-SH3 linker region sites, Tyr(753) and Tyr(759). Phosphorylation of both sites was restored by expression of Tec, but not Syk, family kinases. In contrast, phosphorylation of the PLCgamma2 carboxyl-terminal sites, Tyr(1197) and Tyr(1217), was unaffected by the absence of functional Btk. Together, these data support a model whereby Btk/Tec kinases control sustained calcium signaling via site-specific phosphorylation of key residues within the PLCgamma2 SH2-SH3 linker.  相似文献   

7.
The initiation of Ca(2+) release from internal stores in the egg is a hallmark of egg activation. In sea urchins, PLCgamma activity is necessary for the production of IP(3), which leads to the initial rise in Ca(2+). To examine the possible function of a tyrosine kinase in activating PLCgamma at fertilization, sea urchin eggs were treated with the specific Src kinase inhibitor PP1 or microinjected with recombinant Src-family SH2-domain proteins, which act as dominant interfering inhibitors of Src-family kinase function. Both modes of inhibiting Src-family kinases resulted in a specific and dose-dependent delay in the onset of Ca(2+) release from the endoplasmic reticulum at fertilization. The rise in cytoplasmic pH at fertilization also was inhibited by microinjection of Src-family SH2-domain proteins. Further, an antibody directed against Src-type kinases recognized a protein of ca. M(r) 57K that was enriched in the membrane fraction of eggs. The kinase activity of this protein was stimulated rapidly and transiently at fertilization, as measured by autophosphorylation and by phosphorylation of an exogenous substrate. Together, these data indicate that a Src-type tyrosine kinase is necessary for the initiation of Ca(2+) release from the egg ER at fertilization and identify a Src-type p57 protein as a candidate in the signaling pathway leading to this Ca(2+) release.  相似文献   

8.
S Qin  P B Chock 《Biochemistry》2001,40(27):8085-8091
Using Btk-deficient DT40 cells and the transfectants expressing wild-type Btk or Btk mutants in either kinase (Arg(525) to Gln), Src homology 2 (SH2, Arg(307) to Ala), or pleckstrin homology (PH, Arg(28) to Cys) domains, we investigated the roles and structure-function relationships of Btk in hydrogen peroxide-induced calcium mobilization. Our genetic evidence showed that Btk deficiency resulted in a significant reduction in hydrogen peroxide-induced calcium response. This impaired calcium signaling is correlated with the complete elimination of IP3 production and the significantly reduced tyrosine phosphorylation of PLCgamma2 in Btk-deficient DT40 cells. All of these defects were fully restored by the expression of wild-type Btk in Btk-deficient DT40 cells. The data from the point mutation study revealed that a defect at any one of the three functional domains would prevent a full recovery of Btk-mediated hydrogen peroxide-induced intracellular calcium mobilization. However, mutation at either the SH2 or PH domain did not affect the hydrogen peroxide-induced activation of Btk. Mutation at the SH2 domain abrogates both IP3 generation and calcium release, while the mutant with the nonfunctional PH domain can partially activate PLCgamma2 and catalyze IP3 production but fails to produce significant calcium mobilization. Thus, these observations suggest that Btk-dependent tyrosine phosphorylation of PLCgamma2 is required but not sufficient for hydrogen peroxide-induced calcium mobilization. Furthermore, hydrogen peroxide stimulates a Syk-, but not Btk-, dependent tyrosine phosphorylation of B cell linker protein BLNK. The overall results, together with those reported earlier [Qin et al. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 7118], are consistent with the notion that functional SH2 and PH domains are required for Btk to form a complex with PLCgamma2 through BLNK in order to position the Btk, PLCgamma2, and phosphatidylinositol 4,5-bisphosphate in close proximity for efficient activation of PLCgamma2 and to maximize its catalytic efficiency for IP3 production.  相似文献   

9.
Xenopus oocytes expressing fibroblast growth factor receptor 1 (FGFR1) were used as a biological model system to analyse the signal transduction pathways that are triggered by fibroblast growth factor 1 (FGF1). Germinal vesicle breakdown (GVBD) and phosphorylation of extracellular signal-regulated protein kinase 2 (ERK2) occured 15 h after FGF1 addition. These events were Ras-dependent as they were blocked by a Ras dominant negative form. The Ras activity was promoted by three upstream effectors, growth factor-bound protein 2 (Grb2), phosphatidylinositol 3-kinase (PI3K) and Src cytoplasmic kinase. Ras activation was inhibited by a Grb2 dominant negative form (P49L), by PI3K inhibitors, including wortmannin, LY294002, the N-SH2 domain of p85alpha PI3K and by the SH2 domain of Src. Src activation induced by FGF1 was blocked by the SH2 domain of Src and PP2, a specific inhibitor of Src. The Grb2 adaptor was recruited by the upstream Src homology 2/alpha-collagen-related (Shc) effector, as the SH2-Shc domain prevented the GVBD and the ERK2 phosphorylation induced by FGF1. The importance of another signalling pathway involving phospholipase Cgamma (PLCgamma) was also investigated. The use of the PLCgamma inhibitory peptide, neomycin and the calcium chelator BAPTA-AM on oocytes expressing FGFR1 or the stimulation by PDGF-BB of oocytes expressing PDGFR-FGFR1 mutated on the PLCgamma binding site, prevented GVBD and ERK2 phosphorylation. This study shows that the transduction cascade induced by the FGFR1-FGF1 interaction in Xenopus oocytes represents the sum of Ras-dependent and PLCgamma-dependent pathways. It emphasizes the role played by PI3K and Src and their connections with the Ras cascade in the FGFR1 signal transduction.  相似文献   

10.
Elevation of intracellular Ca2+ at fertilization is essential for the initiation of development in the Xenopus egg, but the pathway between sperm-egg interaction and Ca2+ release from the egg's endoplasmic reticulum is not well understood. Here we show that injection of an inhibitory antibody against the type I IP(3) receptor reduces Ca2+ release at fertilization, indicating that the Ca2+ release requires IP(3). We then examine how IP(3) production is initiated. Xenopus eggs were injected with specific inhibitors of the activation of two phospholipase C isoforms, PLCgamma and PLCbeta. The Src-homology 2 (SH2) domains of PLCgamma were used to inhibit SH2-mediated activation of PLCgamma, and an antibody against G(q) family G-proteins was used to inhibit G(q)-mediated activation of PLCbeta. Though the PLCgamma SH2 domains inhibited platelet-derived growth factor (PDGF)-induced Ca2+ release in eggs with exogenously expressed PDGF receptors, they did not inhibit the Ca2+ rise at fertilization. Similarly, the G(q) family antibody blocked serotonin-induced Ca2+ release in eggs with exogenously expressed serotonin 2C receptors, but not the Ca2+ rise at fertilization. A mixture of PLCgamma SH2 domains and the G(q) antibody also did not inhibit the Ca2+ rise at fertilization. These results indicate that Ca2+ release at fertilization of Xenopus eggs requires type I IP(3)-gated Ca2+ channels, but not SH2 domain-mediated activation of PLCgamma or G(q)-mediated activation of PLCbeta.  相似文献   

11.
The initiation of calcium release at fertilization in the eggs of most animals relies on the production of IP3, implicating the activation of phospholipase C. Recent work has demonstrated that injection of PLC-gamma SH2 domain fusion proteins into starfish eggs specifically inhibits the initiation of calcium release in response to sperm, indicating that PLC-gamma is necessary for Ca2+ release at fertilization [Carroll et al. (1997) J. Cell Biol. 138, 1303-1311]. Here we investigate how PLC-gamma may be activated, by using the PLC-gamma SH2 domain fusion protein as an affinity matrix to identify interacting proteins. A tyrosine kinase activity and an egg protein of ca. Mr 58 K that is recognized by an antibody directed against Src family tyrosine kinases associate with PLC-gamma SH2 domains in a fertilization-dependent manner. These associations are detected by 15 s postfertilization, consistent with a function in releasing Ca2+. Calcium ionophore treatment of eggs did not cause association of the kinase activity or of the Src family protein with the PLC-gamma SH2 domains. These data identify an egg Src family tyrosine kinase as a potential upstream regulator of PLC-gamma in the activation of starfish eggs.  相似文献   

12.
Bruton's tyrosine kinase (Btk) is essential for B-lineage development and represents an emerging family of non-receptor tyrosine kinases implicated in signal transduction events initiated by a range of cell surface receptors. Increased dosage of Btk in normal B cells resulted in a striking enhancement of extracellular calcium influx following B-cell antigen receptor (BCR) cross-linking. Ectopic expression of Btk, or related Btk/Tec family kinases, restored deficient extracellular Ca2+ influx in a series of novel Btk-deficient human B-cell lines. Btk and phospholipase Cgamma (PLCgamma) co-expression resulted in tyrosine phosphorylation of PLCgamma and required the same Btk domains as those for Btk-dependent calcium influx. Receptor-dependent Btk activation led to enhanced peak inositol trisphosphate (IP3) generation and depletion of thapsigargin (Tg)-sensitive intracellular calcium stores. These results suggest that Btk maintains increased intracellular calcium levels by controlling a Tg-sensitive, IP3-gated calcium store(s) that regulates store-operated calcium entry. Overexpression of dominant-negative Syk dramatically reduced the initial phase calcium response, demonstrating that Btk/Tec and Syk family kinases may exert distinct effects on calcium signaling. Finally, co-cross-linking of the BCR and the inhibitory receptor, FcgammaRIIb1, completely abrogated Btk-dependent IP3 production and calcium store depletion. Together, these data demonstrate that Btk functions at a critical crossroads in the events controlling calcium signaling by regulating peak IP3 levels and calcium store depletion.  相似文献   

13.
A 58-kDa protein was detected in Xenopus egg lysate by SDS-PAGE and immunoblotting with an antibody raised against adaptor protein Shc, a well known tyrosine kinase substrate in numerous biological events. Tyrosine phosphorylation of the Xenopus Shc protein (p58 xShc) was found to increase 2.3 +/- 0.4-fold (n = 3) upon fertilization. Pretreatment of eggs with the tyrosine kinase inhibitor genistein effectively blocked the fertilization-dependent phosphorylation. Tyrosine phosphorylation of p58 xShc was also observed when eggs were activated parthenogenetically by an integrin-interacting RGDS-peptide which is known to cause egg activation accompanied by intracellular calcium release. On the other hand, other egg-activating treatments such as electrical shock and calcium ionophore, which directly induce the elevation of intracellular calcium, did not show such an effect. It is also suggested that the phosphorylated p58 xShc may play a role unique to the egg activation process because we found that there was no increase of Shc-Grb2 complex after fertilization. These results demonstrate that p58 xShc is a substrate of egg tyrosine kinases which may be activated by sperm-egg interaction and suggest that the phosphorylated p58 xShc may act upstream of the calcium-dependent pathway of egg activation.  相似文献   

14.
Hyaluronan (HA) is a large nonsulfated glycosaminoglycan and an important regulator of angiogenesis, in particular, the growth and migration of vascular endothelial cells. We have identified some of the key intermediates responsible for induction of mitogenesis and wound recovery. Treatment of bovine aortic endothelial cells with oligosaccharides of hyaluronan (o-HA) resulted in rapid tyrosine phosphorylation and plasma membrane translocation of phospholipase Cgamma1 (PLCgamma1). Cytoplasmic loading with inhibitory antibodies to PLCgamma1, Gbeta, and Galpha(i/o/t/z) inhibited activation of extracellular-regulated kinase 1/2 (ERK1/2). Treatment with the Galpha(i/o) inhibitor, pertussis toxin, reduced o-HA-induced PLCgamma1 tyrosine phosphorylation, protein kinase C (PKC) alpha and beta1/2 membrane translocation, ERK1/2 activation, mitogenesis, and wound recovery, suggesting a mechanism for o-HA-induced angiogenesis through G-proteins, PLCgamma1, and PKC. In particular, we demonstrated a possible role for PKCalpha in mitogenesis and PKCbeta1/2 in wound recovery. Using antisense oligonucleotides and the Ras farnesylation inhibitor FTI-277, we showed that o-HA-induced bovine aortic endothelial cell proliferation, wound recovery, and ERK1/2 activation were also partially dependent on Ras activation, and that o-HA-stimulated tyrosine phosphorylation of the adapter protein Shc, as well as its association with Sos1. Binding of Src to Shc was required for its activation and for Ras-dependent activation of ERK1/2, cell proliferation, and wound recovery. Neither Src nor Ras activation was inhibited by pertussis toxin, suggesting that their activation was independent of heterotrimeric G-proteins. However, the specific Src kinase inhibitor PP2 inhibited Gbeta subunit co-precipitation with PLCgamma1, suggesting a possible role for Src in activation of PLCgamma1 and interaction between two distinct o-HA-induced signaling pathways.  相似文献   

15.
The protein kinase Mos is responsible for the activation of MEK1 and p42 mitogen-activated protein kinase during Xenopus oocyte maturation and during mitosis in Xenopus egg extracts. Here we show that the activation of Mos depends upon the phosphorylation of Ser 3, a residue previously implicated in the regulation of Mos stability; the dephosphorylation of Ser 105, a previously unidentified phosphorylation site conserved in Mos proteins; and the regulated dissociation of Mos from CK2beta. Mutation of Ser 3 to alanine and/or mutation of Ser 105 to glutamate produces a Mos protein that is defective for M-phase activation, as assessed by in vitro kinase assays, and defective for induction of oocyte maturation and maintenance of the spindle assembly checkpoint in extracts. Interestingly, Ser 105 is situated at the beginning of helix alphaC in the N-terminal lobe of the Mos kinase domain. Changes in the orientation of this helix have been previously implicated in the activation of Cdk2 and Src family tyrosine kinases. Our work suggests that Ser 105 dephosphorylation represents a novel mechanism for reorienting helix alphaC.  相似文献   

16.
Signal transduction leading to calcium release in echinoderm eggs at fertilization requires phospholipase Cgamma-mediated production of inositol trisphosphate (IP(3)), indicating that a tyrosine kinase is a likely upstream regulator. Because previous work has shown a fertilization-dependent association between the Src homology 2 (SH2) domains of phospholipase Cgamma and a Src family kinase, we examined whether a Src family kinase was required for Ca(2+) release at fertilization. To inhibit the function of kinases in this family, we injected starfish eggs with the SH2 domains of Src and Fyn kinases. This inhibited Ca(2+) release in response to fertilization but not in response to injection of IP(3). We further established the specificity of the inhibition by showing that the SH2 domains of several other tyrosine kinases (Abl, Syk, and ZAP-70), and the SH3 domain of Src, were not inhibitory. Also, a point-mutated Src SH2 domain, which has reduced affinity for phosphotyrosine, was a correspondingly less effective inhibitor of fertilization-induced Ca(2+) release. These results indicate that a Src family kinase, by way of its SH2 domain, links sperm-egg interaction to IP(3)-mediated Ca(2+) release at fertilization in starfish eggs.  相似文献   

17.
Phospholipase Cgamma (PLCgamma) isoforms are regulated through activation of tyrosine kinase-linked receptors. The importance of growth factor-stimulated phosphorylation of specific tyrosine residues has been documented for PLCgamma1; however, despite the critical importance of PLCgamma2 in B-cell signal transduction, neither the tyrosine kinase(s) that directly phosphorylate PLCgamma2 nor the sites in PLCgamma2 that become phosphorylated after stimulation are known. By measuring the ability of human PLCgamma2 to restore calcium responses to the B-cell receptor stimulation or oxidative stress in a B-cell line (DT40) deficient in PLCgamma2, we have demonstrated that two tyrosine residues, Tyr(753) and Tyr(759), were important for the PLCgamma2 signaling function. Furthermore, the double mutation Y753F/Y759F in PLCgamma2 resulted in a loss of tyrosine phosphorylation in stimulated DT40 cells. Of the two kinases that previously have been proposed to phosphorylate PLCgamma2, Btk, and Syk, purified Btk had much greater ability to phosphorylate recombinant PLCgamma2 in vitro, whereas Syk efficiently phosphorylated adapter protein BLNK. Using purified proteins to analyze the formation of complexes, we suggest that function of Syk is to phosphorylate BLNK, providing binding sites for PLCgamma2. Further analysis of PLCgamma2 tyrosine residues phosphorylated by Btk and several kinases from the Src family has suggested multiple sites of phosphorylation and, in the context of a peptide incorporating residues Tyr(753) and Tyr(759), shown preferential phosphorylation of Tyr(753).  相似文献   

18.
Activation of phospholipase C-gamma2 (PLCgamma2) is the critical step in B cell antigen receptor (BCR)-coupled calcium signaling. Although genetic dissection experiments on B cells have demonstrated that Bruton's tyrosine kinase (Btk) and Syk are required for activating PLCgamma2, the exact activation mechanism of PLCgamma2 by these kinases has not been established. We identify the tyrosine residues 753, 759, 1197, and 1217 in rat PLCgamma2 as Btk-dependent phosphorylation sites by using an in vitro kinase assay. To evaluate the role of these tyrosine residues in phosphorylation-dependent activation of PLCgamma2, PLCgamma2-deficient DT40 cells were reconstituted with a series of mutant PLCgamma2s in which the phenylalanine was substituted for tyrosine. Substitution of all four tyrosine residues almost completely eliminated the BCR-induced PLCgamma2 phosphorylation, indicating that these residues include the major phosphorylation sites upon BCR engagement. Cells expressing PLCgamma2 with a single substitution exhibited some extent of reduction in calcium mobilization, whereas those expressing quadruple mutant PLCgamma2 showed greatly reduced calcium response. These findings indicate that the phosphorylations of the tyrosine residues 753, 759, 1197, and 1217, which have been identified as Btk-dependent phosphorylation sites in vitro, coordinately contribute to BCR-induced activation of PLCgamma2.  相似文献   

19.
20.
Phospholipase C-gamma1 (PLC-gamma1) is rapidly activated in response to growth factor stimulation and plays an important role in regulating cell proliferation and differentiation through the generation of the second messengers diacylglycerol and inositol 1,4,5-trisphosphate, leading to the activation of protein kinase C (PKC) and increased levels of intracellular calcium, respectively. Given the existing overlap between signaling pathways that are activated in response to oxidant injury and those involved in responding to proliferative stimuli, we investigated the role of PLC-gamma1 during the cellular response to oxidative stress. Treatment of normal mouse embryonic fibroblasts (MEF) with H2O2 resulted in time- and concentration-dependent tyrosine phosphorylation of PLC-gamma1. Phosphorylation could be blocked by pharmacological inhibitors of Src family tyrosine kinases or the epidermal growth factor receptor tyrosine kinase, but not by inhibitors of the platelet-derived growth factor receptor or phosphatidylinositol 3-kinase. To investigate the physiologic relevance of H2O2-induced tyrosine phosphorylation of PLC-gamma1, we compared survival of normal MEF and PLC-gamma1-deficient MEF following exposure to H2O2. Treatment of PLC-gamma1-deficient MEF with H2O2 resulted in rapid cell death, whereas normal MEF were resistant to the stress. Pretreatment of normal MEF with a selective pharmacological inhibitor of PLC-gamma1, or inhibitors of inositol trisphosphate receptors and PKC, increased their sensitivity to H2O2, whereas treatment of PLC-gamma1-deficient MEF with agents capable of directly activating PKC and enhancing calcium mobilization significantly improved their survival. Finally, reconstitution of PLC-gamma1 protein expression in PLC-gamma1-deficient MEF restored cell survival following H2O2 treatment. These findings suggest an important protective function for PLC-gamma1 activation during the cellular response to oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号