首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tyrosinases are widely distributed in nature. They are copper‐containing oxidases belonging to the type 3 copper protein family, together with catechol oxidases and haemocyanins. Tyrosinases are essential enzymes in melanin biosynthesis and therefore responsible for pigmentation of skin and hair in mammals, where two more enzymes, the tyrosinase‐related proteins (Tyrps), participate in the pathway. The structure and catalytic mechanism of mammalian tyrosinases have been extensively studied but they are not completely understood because of the lack of information on the tertiary structure. The availability of crystallographic data of one plant catechol oxidase and one bacterial tyrosinase has improved the model of the three‐dimensional structure of the active site of the enzyme. Furthermore, sequence comparison of tyrosinase and the Tyrps reveals that the three orthologue proteins share many key structural features, because of their common origin from an ancestral gene, although the specific residues responsible for their different catalytic capabilities have not been identified yet. This review summarizes our current knowledge of tyrosinase and Tyrps structure and function and describes the catalytic mechanism of tyrosinase and Dct/Tyrp2, which are better characterized.  相似文献   

2.
We studied the pigmentary activity of the peptides gamma 1, gamma 2 and gamma 3 melanocyte stimulating hormone (MSH), which differ in the structure of their C-termini, using hamster and mouse melanoma cell lines responsive to beta-MSH by increasing tyrosinase activity. Gamma 1-MSH alone or in combination with beta-MSH had no effect on either cell line. Gamma 2-MSH alone was biologically inactive but potentiated beta-MSH stimulation of tyrosinase activity. Gamma 3-MSH at high concentration (10 microM) induced tyrosinase activity and dendrite formation in the hamster melanoma line. When added together with beta-MSH, gamma 3-MSH partially inhibited the tyrosinase activity response to beta-MSH. Thus, gamma-MSH peptides have low intrinsic melanotropic activity in mammalian melanoma cells; the specific pigmentary responses appear to be affected by the structure of the C-terminal portion.  相似文献   

3.
Although tyrosinase has been considered for a long time the only enzyme involved in mammalian melanosynthesis, it has been shown that mouse melanoma melanosomes contain high levels of dopachrome tautomerase (DCT2), an enzyme catalyzing DC tautomerization to DHICA. At least in B16 mouse melanoma, DCT is present in higher catalytic amounts than tyrosinase. Moreover, it can be anticipated that tyrosinase and DCT should be very difficult to resolve by most conventional biochemical techniques because of the structural similarity between these enzymes, as predicted from the sequence of their corresponding cDNAs. It is shown that the presence of DCT can cause serious artifacts when tyrosinase activity is determined by most of the currently available methods, such as the Dopa oxidase and melanin formation assays. We describe a simple and convenient method for the preparation of tyrosinase devoid of DCT. The method takes advantage of the different thermal stability of both enzymes. Heating of crude melanosomal extracts at 60°C for 1 hr results in a complete denaturation of DCT, while tyrosinase activity is recovered almost quantitatively. The resulting tyrosinase preparation is considerably purified and the electrophoretic, immunologic and kinetic characteristics of the enzyme appear unaltered. Because if its high yield and simplicity, the method can be used for the microscale partial purification of DCT-free tyrosinase from mammalian malignant melanocytes grown in culture.  相似文献   

4.
The effect of several polyamines on the activity of tyrosinase from different sources has been studied. Diaminoethane, 1,3-diaminopropane and putrescine activated tyrosinase from Harding-Passey mouse melanoma but did not activate frog epidermis or mushroom tyrosinases. 1,3-diaminopropane was the strongest activator (Ka = 0.23 mM). The activation was saturable and dependent on the ionic strength. Cadaverine, 1,6-diaminohexane and spermidine had no effect on any tyrosinase. However, spermine inhibited melanoma tyrosinase more than the mushroom and frog epidermis enzymes. These results show that the effect of polyamines on mammalian tyrosinase is due to direct enzyme-oligoamine interactions rather than to a nonspecific action on L-dopa oxidation products, and suggest that physiological polyamines might play a modulatory role on mammalian melanogenesis.  相似文献   

5.
Results of hemacytometer cell counts and of tyrosinase measurements made by the Pomerantz method demonstrate that imidazole added to the medium of cultured B16 mouse melanoma cells can stimulate tyrosinase specific activity and inhibit cell division. These effects are greater than with adenosine 3',5' cyclic monophosphate (cAMP) or the cAMP-phosphodiesterase inhibitor theophylline. The effects of imidazole on cell division and tyrosinase are enhanced by theophylline and antagonized by cAMP. Cyclic AMP-phosphodiesterase activity in cell-free extracts can be inhibited by theophylline and stimulated by imidazole. However, imidazole does not affect cAMP-phosphodiesterase specific activity in vivo, nor does it affect intracellular cAMP concentrations as determined by competitive protein-binding assays. In contrast, the specific activity of cAMP-phosphodiesterase in vivo is stimulated by cAMP and theophylline, supporting the hypothesis that cAMP and agents which increase intracellular cAMP concentrations induce the synthesis of cAMP-phosphodiesterase. Studies with actinomycin-D and cycloheximide support the hypothesis that cAMP can also mediate posttranslational activation of tyrosinase. Similar experiments suggest that imidazole, or a derivative thereof, can induce the synthesis of tyrosinase at the pretranslational level of control. We hypothesize that this type of regulation (pretranslational) by imidazole may define a role for the concept of "Metabolite Gene Regulation" (MGR), in mammalian cells.  相似文献   

6.
7.
Tyrosinase-negative oculocutaneous albinism (OCA1A) is characterized by lifelong white hair and skin, a phenotype that has been described in most mammalian species worldwide. Tyrosinase is the key enzyme in melanin biosynthesis, and mutations in the tyrosinase gene result in OCA1A. We examined sequence variation at exon 1 of the tyrosinase gene in 66 humpback whale samples collected from the east coast of Australia, including an anomalously white humpback whale known as "Migaloo." We identified 3 novel variants, including a cytosine deletion that results in a premature stop codon in exon 1. The deletion truncates the tyrosinase protein including the putative catalytic domains that are essential for tyrosinase enzymatic activity. Migaloo was homozygous for this deletion, suggesting that the albino phenotype is a consequence of inactive tyrosinase caused by the frameshift in the tyrosinase gene.  相似文献   

8.
Melanin formation from 3,4-dihydroxyphenylalanine (dopa) was studied in the presence of estradiol and 2-hydroxyestradiol by use of a tyrosinase isolated from B16-F10 melanoma cells grown in C57 black female mice. Both steroids were found incorporated into melanin, but the 2-hydroxy compound was incorporated to a higher extent. The melanin was also able to bind substantial amounts of the two steroids, and the more highly oxidized compound showed higher binding. Melanin isolated from incubates of dopa with mushroom tyrosinase has the ability to bind the steroids and to incorporate small amounts into its structure. It is suggested that melanin in mammalian tissues may function as a depository for estrogens, particularly for those which are more highly oxidized.  相似文献   

9.
Melanogenesis in mammalian pigment cells is regulated by changes in the activity of tyrosinase, the rate-limiting enzyme for melanin synthesis. Because recent evidence suggests that this enzyme may exist in pigment cells in both active and inactive stages, a competitive enzyme-linked immunoadsorbent assay (ELISA) was developed to compare tyrosinase levels in amelanotic and melanotic melanoma cell clones. The melanotic cell line used for this study, MEL-11A, had basal tyrosinase levels approximately 40 times that of the amelanotic cell line, AM-7. Both cell lines responded to melanocyte-stimulating hormone by demonstrating large increases in tyrosinase activity. For competitive ELISA analysis of tyrosinase levels in these two clones, microtiter plates were coated with purified tyrosinase, and trypsinized cell extracts were tested for their ability to compete with bound tyrosinase for antibody binding. Although tyrosinase activity in the amelanotic clone was 1/40 that of the melanotic clone, immunoreactive tyrosinase levels in AM-7 cells were found to be approximately one-half that present in the melanotic clone. Additional evidence for the presence of an inactive (or at least, catalytically less active) enzyme in AM-7 cells was obtained from immunotitration analysis of tyrosinase in cell extracts from both cell lines. These results suggest that at least some amelanotic melanoma cells may contain significant levels of catalytically inactive tyrosinase molecules and that the level of pigmentation in mammalian melanocytes may be regulated by a tyrosinase activation process.  相似文献   

10.
Redefining the skin's pigmentary system with a novel tyrosinase assay   总被引:5,自引:0,他引:5  
In mammalian skin, melanin is produced by melanocytes and transferred to epithelial cells, with the epithelial cells thought to receive pigment only and not generate it. Melanin formation requires the enzyme tyrosinase, which catalyzes multiple reactions in the melanin biosynthetic pathway. Here, we reassess cutaneous melanogenesis using tyramide-based tyrosinase assay (TTA), a simple test for tyrosinase activity in situ. In the TTA procedure, tyrosinase reacts with biotinyl tyramide, causing the substrate to deposit near the enzyme. These biotinylated deposits are then visualized with streptavidin conjugated to a fluorescent dye. In the skin and eye, TTA was highly specific for tyrosinase and served as a sensitive indicator of pigment cell distribution and status. In clinical skin samples, the assay detected pigment cell defects, such as melanocytic nevi and vitiligo, providing confirmation of medical diagnoses. In murine skin, TTA identified a new tyrosinase-positive cell type--the medullary cells of the hair--providing the first example of cutaneous epithelial cells with a melanogenic activity. Presumably, the epithelial tyrosinase originates in melanocytes and is acquired by medullary cells during pigment transfer. As tyrosinase by itself can generate pigment from tyrosine, it is likely that medullary cells produce melanin de novo. Thus, we propose that melanocytes convert medullary cells into pigment cells by transfer of the melanogenic apparatus, an unusual mechanism of differentiation that expands the skin's pigmentary system.  相似文献   

11.
Comparison analysis of the sequences of the mouse and human genomes has proven a powerful approach in identifying functional regulatory elements within the non‐coding regions that are conserved through evolution between homologous mammalian loci. Here, we applied computational analysis to identify regions of homology in the 5′ upstream sequences of the human tyrosinase gene, similar to the locus control region (LCR) of the mouse tyrosinase gene, located at ?15 kb. We detected several stretches of homology within the first 30 kb 5′ tyrosinase gene upstream sequences of both species that include the proximal promoter sequences, the genomic region surrounding the mouse LCR, and further upstream segments. We cloned and sequenced a 5′ upstream regulatory sequence found between ?8 and ?10 kb of the human tyrosinase locus (termed h5′URS) homologous to the mouse LCR sequences, and confirmed the presence of putative binding sites at ?9 kb, homologous to those described in the mouse tyrosinase LCR core. Finally, we functionally validated the presence of a tissue‐specific enhancer in the h5′URS by transient transfection analysis in human and mouse cells, as compared with homologous DNA sequences from the mouse tyrosinase locus. Future experiments in cells and transgenic animals will help us to understand the in vivo relevance of this newly described h5′URS sequence as a potentially important regulatory element for the correct expression of the human tyrosinase gene.  相似文献   

12.
The structure of tyrosinase (Tyr) is reviewed from a double point of view. On the one hand, by comparison of all Tyr found throughout nature, from prokaryotic organisms to mammals and on the other, by comparison with the tyrosinase related proteins (Tyrps) that appeared late in evolution, and are only found in higher animals. Their structures are reviewed as a whole rather than focused on the histidine (His)-bound metal active site, which is the part of the molecule common to all these proteins. The availability of crystallographic data of hemocyanins and recently of sweet potato catechol oxidase has improved the model of the three-dimensional structure of the Tyr family. Accordingly, Tyr has a higher structural disorder than hemocyanins, particularly at the CuA site. The active site seems to be characterized by the formation of a hydrophobic pocket with a number of conserved aromatic residues sited close to the well-known His. Other regions specific of the mammalian enzymes, such as the cytosolic C-terminal tail, the cysteine clusters, and the N-glycosylation sequons, are also discussed. The complete understanding of the Tyr copper-binding domain and the characterization of the residues determinant of the relative substrate affinities of the Tyrps will improve the design of targeted mutagenesis experiments to understand the different catalytic capabilities of Tyr and Tyrps. This may assist future aims, from the design of more efficient bacterial Tyr for biotechnological applications to the design of inhibitors of undesirable fruit browning in vegetables or of color skin modulators in animals.  相似文献   

13.
Mutations of the tyrosinase gene associated with a partial or complete loss of enzymatic activity are responsible for tyrosinase related oculocutaneous albinism (OCA1). A large number of mutations have been identified and their analysis has provided in-sight into the biology of tyrosinase and the pathogenesis of these different mutations. Missense mutations produce their effect on the activity of an enzyme by altering an amino acid at a specific site. The location of these mutations in the peptide can be used to indicate potential domains important for enzymatic activity. Missense mutations of the tyrosinase polypeptide cluster in four regions, suggesting that these are important functional domains. Two of the potential domains involve the copper binding sites while the others are likely involved in substrate binding. More critical analysis of the copper binding domain of tyrosinase can be gained by analyzing the structure of hemocyanin, a copper-binding protein with a high degree of homology to tyrosinase in the copper binding region. This analysis indicates a single catalytic site in tyrosinase for all enzymatic activities.  相似文献   

14.
Tyrosinase, the rate-limiting enzyme in mammalian melanogenesis, is a copper-containing transmembrane glycoprotein. Tyrosinase undergoes a complex post-translational processing before reaching the melanosomal membrane. This processing involves N-glycosylation in several sites, including one located in the CuB copper binding site, movement from the endoplasmic reticulum (ER) to the Golgi, copper binding, and sorting to the melanosome. Aberrant processing is causally related to the depigmented phenotype of human melanomas. Moreover, some forms of albinism and several other pigmentary syndromes are considered ER retention diseases or trafficking defects. A critical step in tyrosinase maturation is the acquisition of an ER export-competent conformation recognized positively by the ER quality control system. However, the minimal structural requirements allowing exit from the ER to the Golgi have not yet been identified for tyrosinase or other melanosomal proteins. We addressed this question by analyzing the enzymatic activity and glycosylation pattern of mouse tyrosinase point mutants and chimeric constructs, where selected portions of tyrosinase were replaced by the homologous fragments of the highly similar tyrosinase-related protein 1. We show that a completely inactive tyrosinase point mutant lacking a critical histidine residue involved in copper binding is nevertheless able to exit from the ER and undergo further processing. Moreover, we demonstrate that tyrosinase displays at least two sites whose glycosylation is post-translational and most likely conformation-dependent and that a highly specific interaction involving the CuB site is essential not only for correct glycosylation but also for exit from the ER and enzymatic activity.  相似文献   

15.
16.
Congenital defects in retinal pigmentation, as in oculocutaneous albinism Type I (OCA1), where tyrosinase is defective, result in visual abnormalities affecting the retina and pathways into the brain. Transgenic animals expressing a functional tyrosinase gene on an albino genetic background display a correction of all these abnormalities, implicating a functional role for tyrosinase in normal retinal development. To address the function of tyrosinase in the development of the mammalian visual system, we have generated a transgenic mouse model with inducible expression of the tyrosinase gene using the tetracycline (TET-ON) system. We have produced two types of transgenic mice: first, mice expressing the transactivator rtTA chimeric protein under the control of mouse tyrosinase promoter and its locus control region (LCR), and; second, transgenic mice expressing a mouse tyrosinase cDNA construct driven by a minimal promoter inducible by rtTA in the presence of doxycycline. Inducible experiments have been carried out with selected double transgenic mouse lines. Tyrosinase expression has been induced from early embryo development and its impact assessed with histological and biochemical methods in heterozygous and homozygous double transgenic individuals. We have found an increase of tyrosinase activity in the eyes of induced animals, compared with littermate controls. However, there was significant variability in the activation of this gene, as reported in analogous experiments. In spite of this, we could observe corrected uncrossed chiasmatic pathways, decreased in albinism, in animals induced from their first gestational week. These mice could be instrumental in revealing the role of tyrosinase in mammalian visual development.  相似文献   

17.
Kinetic experiments are reported showing that mammalian tyrosinase from B16 mouse melanoma is significantly activated by catalytic amounts of ferrous ions. Monitoring of tyrosine oxidation by both dopachrome formation and oxygen consumption showed that ferrous ions at micromolar concentrations induce a marked enzymatic activity with 0.01 U/ml of highly purified tyrosinase, whereas no detectable reaction occurs in the absence of metal over a sufficiently prolonged period of time. The extent of the activating effect, which is specific for the reduced form of iron, is proportional to the concentration of the added metal with a typical saturation profile, no further effect being observed beyond a threshold value. Changing the buffer system from phosphate to hepes or tris results in a marked decrease of the Fe2(+)-induced activation. Scavengers of active oxygen species, such as superoxide dismutase, catalase, formate and mannitol have no detectable effect on the tyrosinase activity. These results are accounted for in terms of an activation mechanism involving reduction of the cupric ions at the active site of the resting enzyme.  相似文献   

18.
Down-regulation of melanin synthesis is required for recovery of pigmentary disorders and it is known that direct inhibitors of tyrosinase, the key enzyme in melanin synthesis, such as hydroquinone with a phenol structure, suppress melanin synthesis. We screened several phenolic derivatives using B16 melanoma cells and found that a biphenyl derivative, 2,2'-dihydroxy-5,5'-dipropyl-biphenyl (DDB), down-regulated melanin synthesis effectively. Although DDB has a phenol structure, it did not inhibit tyrosinase in vitro, thus we examined its mechanism in detail. Western blotting revealed that the amount of tyrosinase was decreased by DDB, and pulse-chase labeling and immunoprecipitation analysis showed a decrease of mature tyrosinase and acceleration of tyrosinase degradation in its presence. These results suggest that DDB down-regulates melanin synthesis by inhibiting the maturation of tyrosinase, leading to acceleration of tyrosinase degradation.  相似文献   

19.
IN spite of continuing research on the treatment of Parkinson's disease1–3, no drug with clear advantages over L-dopa (the L-isomer of 3,4-dihydroxyphenylalanine) has yet been found. The problems of supply of L-dopa and reduction of its side effects4 are therefore still of interest. L-Dopa can be obtained from L-tyrosine by a hydroxylation reaction catalysed by the enzyme tyrosinase (EC 1.10.3.1). Such a reaction using immobilized tyrosinase could form the basis of an industrial method because L-tyrosine is cheap. Alternatively, in view of the fact that L-tyrosine is present in human serum, immobilized tyrosinase suitably implanted in the blood stream might be used to synthesize L-dopa in situ. We have been studying tyrosinase immobilized by covalent attachment to a cellulosic support. In the absence of a readily available mammalian tyrosinase or tyrosine hydroxylase which would be more suitable for clinical purposes we have used a polyphenol oxidase with tyrosinase activity, obtainable from mushrooms.  相似文献   

20.
In spite of the central role of tyrosinase in mammalian pigmentation, few data are available on its structure and structure-function relationships based on direct analysis of the protein. A number of reasons have been invoked to account for this situation, including the problems for its purification and its resistance to proteases. However, no study on the effects of proteases on purified tyrosinase has been reported. We have purified the melanosomal and cytosolic tyrosinases from B16 mouse melanoma and analyzed their susceptibility to trypsin digestion. Both isoforms are sensitive to trypsin, and display similar peptide maps and kinetics of proteolysis, suggesting that they are products of the same gene. The peptide maps and the kinetics of appearance of the fragments were consistent with the sequential removal of N-terminal peptides, leading to a core of 55.3 kDa for the melanosomal form and 48.6 kDa for the cytosolic enzyme. This core was apparently resistant to further proteolysis and catalytically inactive. The difference in molecular weight for the core of the cytosolic and melanosomal forms is the same as that calculated for the native isoforms. The kinetics of enzyme inactivation indicate that the tyrosine hydroxylase and Dopa oxidase activities of tyrosinase are lost at the same rate, and should therefore display similar if not identical structural requirements. The results are discussed in terms of the relationship of both isoforms and of the putative protein sequences deduced from the cDNA clones proposed for tyrosinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号