首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the last years, post-translational modification of peripheral membrane proteins with hydrophobic side groups has been attributed to a couple of additional functions than just simple anchoring into lipid bilayers. In particular isoprenylation and N- and S-acylation did quicken interest in terms of specific recognition elements for protein-protein interactions and as hydrophobic switches that allow for temporal regulated association with distinct target structures. Furthermore new insights into the heterogeneity of natural membranes have connected the physical properties of e.g. farnesyl or palmitoyl side chains with a preference for such sub-compartments as lipid rafts or caveolae. In this review the impact of the two frequently realized modifications by isoprenylation and S-acylation on the process of cellular signal transduction is exemplified with proteins of the Ras and Rab family of small GTP-binding proteins.  相似文献   

2.
Dietrich LE  Ungermann C 《EMBO reports》2004,5(11):1053-1057
Protein palmitoylation or, more specifically, S-acylation is a reversible post-translational lipid modification. Despite the identification of several proteins that are altered in this way, our understanding of the enzymology of this process has been hampered by the lack of well-characterized acyltransferases. We now know of three proteins in Saccharomyces cerevisiae that promote palmitoylation: effector of Ras function (Erf2), ankyrin-repeat-containing protein (Akr1) and the SNARE protein Ykt6. Erf2 and Akr1 are integral membrane proteins that contain a cysteine-rich domain and an Asp-His-His-Cys motif, both of which catalyse acylation at the carboxyl terminus of their target proteins. Recently, we discovered that Ykt6 mediates the amino-terminal acylation of the fusion protein Vac8. Even though these three proteins differ in sequence, topology, size and substrate specificity, they might function in a similar manner. In this review, we discuss these observations in the context of a potential general mechanism of acylation.  相似文献   

3.
Post-translational modifications (PTMs) such as phosphorylation and ubiquitination are well-studied events with a recognized importance in all aspects of cellular function. By contrast, protein S-acylation, although a widespread PTM with important functions in most physiological systems, has received far less attention. Perturbations in S-acylation are linked to various disorders, including intellectual disability, cancer and diabetes, suggesting that this less-studied modification is likely to be of considerable biological importance. As an exemplar, in this review, we focus on the newly emerging links between S-acylation and the hormone insulin. Specifically, we examine how S-acylation regulates key components of the insulin secretion and insulin response pathways. The proteins discussed highlight the diverse array of proteins that are modified by S-acylation, including channels, transporters, receptors and trafficking proteins and also illustrate the diverse effects that S-acylation has on these proteins, from membrane binding and micro-localization to regulation of protein sorting and protein interactions.  相似文献   

4.
The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses mediates host cell entry and is S-acylated on multiple phylogenetically conserved cysteine residues. Multiple protein acyltransferase enzymes have been reported to post-translationally modify spike proteins; however, strategies to exploit this modification are lacking. Using resin-assisted capture MS, we demonstrate that the spike protein is S-acylated in SARS-CoV-2-infected human and monkey epithelial cells. We further show that increased abundance of the acyltransferase ZDHHC5 associates with increased S-acylation of the spike protein, whereas ZDHHC5 knockout cells had a 40% reduction in the incorporation of an alkynyl-palmitate using click chemistry detection. We also found that the S-acylation of the spike protein is not limited to palmitate, as clickable versions of myristate and stearate were also labelled the protein. Yet, we observed that ZDHHC5 was only modified when incubated with alkyne-palmitate, suggesting it has specificity for this acyl-CoA, and that other ZDHHC enzymes may use additional fatty acids to modify the spike protein. Since multiple ZDHHC isoforms may modify the spike protein, we also examined the ability of the FASN inhibitor TVB-3166 to prevent S-acylation of the spike proteins of SARS-CoV-2 and human CoV-229E. We show that treating cells with TVB-3166 inhibited S-acylation of expressed spike proteins and attenuated the ability of SARS-CoV-2 and human CoV-229E to spread in vitro. Our findings further substantiate the necessity of CoV spike protein S-acylation and demonstrate that de novo fatty acid synthesis is critical for the proper S-acylation of the spike protein.  相似文献   

5.
Membrane resident proteins are a common feature of biology yet many of these proteins are not integral to the membrane. These peripheral membrane proteins are often bound to the membrane by the addition of fatty acyl chains to the protein. This modification, known as S-acylation or palmitoylation, promotes very strong membrane association but is also reversible allowing for a high degree of control over membrane association. Many S-acylated proteins are resident in sterol, sphingolipid and saturated-lipid enriched microdomains indicating an important role for S-acylation in protein partitioning within membranes. This review summarises the current knowledge of S-acylation in plants. S-acylated proteins play a wide variety of roles in plants and affect Ca2+ signalling, K+ movement, stress signalling, small and heterotrimeric G-protein membrane association and partitioning, tubulin function as well as pathogenesis. Although the study of S-acylation is in its infancy in plants this review illustrates that S-acylation is extremely important for plant function and that there are many unexplored aspects of S-acylation in plants. A full summary of the techniques and methods available to study S-acylation in plants is also presented.  相似文献   

6.
7.
Palmitoylation, more correctly known as S-acylation, aids in the regulation of cellular functions including stress response, disease resistance, hormone signalling, cell polarisation, cell expansion and cytoskeletal organization. S-acylation is the reversible addition of fatty acids to proteins, which increases their membrane affinity. Membrane-protein interactions are important for signalling complex formation and signal propagation, protein sequestration and segregation, protein stability, and maintaining polarity within the cell. S-acylation is a dynamic modification that modulates the activity and membrane association of many signalling molecules, including ROP GTPases, heterotrimeric G-proteins and calcium-sensing kinases. Recent advances in methods to study S-acylation are permitting an in-depth examination of its function in plants.  相似文献   

8.
Many proteins are S-acylated, affecting their localization and function. Dynamic S-acylation in response to various stimuli has been seen for several proteins in vivo. The regulation of S-acylation is beginning to be elucidated. Proteins can autoacylate or be S-acylated by protein acyl transferases (PATs). Deacylation, on the other hand, is an enzymatic process catalyzed by protein thioesterases (APT1 and PPT1) but only APT1 appears to be involved in the regulation of the reversible S-acylation of cytoplasmic proteins seen in vivo. PPT1, on the other hand, is involved in the lysosomal degradation of S-acylated proteins and PPT1 deficiency causes the disease infant neuronal ceroid lipofuscinosis.  相似文献   

9.
Protein S-acylation, more commonly known as protein palmitoylation, is a biological process defined by the covalent attachment of long chain fatty acids onto cysteine residues of a protein, effectively altering the local hydrophobicity and influencing its stability, localization and overall function. Observed ubiquitously in all eukaryotes, this post translational modification is mediated by the 23-member family of zDHHC protein acyltransferases in mammals. There are thousands of proteins that are S-acylated and multiple zDHHC enzymes can potentially act on a single substrate. Since its discovery, numerous methods have been developed for the identification of zDHHC substrates and the individual members of the family that catalyse their acylation. Despite these recent advances in assay development, there is a persistent gap in knowledge relating to zDHHC substrate specificity and recognition, that can only be thoroughly addressed through in vitro reconstitution. Herein, we will review the various methods currently available for reconstitution of protein S-acylation for the purposes of identifying enzyme–substrate pairs with a particular emphasis on the advantages and disadvantages of each approach.  相似文献   

10.
S-Acylation (commonly referred to as S-palmitoylation) is a post-translational modification consisting in the covalent attachment of an acyl chain to a cysteine residue of the target protein. The lability of the resulting thioester bond gives S-acylation an essential characteristic: its reversibility. S-acylation dynamically regulates different aspects in the life of a protein (including stability, localization, interactome, and function) and, thus, plays critical roles in cellular physiology. For long, the reversibility of S-acylation has been neglected and thereby its potential as a regulatory mechanism for protein function undervalued. Thanks to technological advances, the field has now entered its golden era. A great diversity of interesting targets is being identified, the physio-pathological importance of the modification is starting to be revealed, structural information on the enzymes is becoming available, and the regulatory dynamics are gradually being understood. Here we will review the most recent literature in the S-acylation field, with a special focus on the molecular aspects of the modification, its regulation, and its consequences.  相似文献   

11.
Arabidopsis thaliana calcineurin B-like proteins (CBLs) interact specifically with a group of CBL-interacting protein kinases (CIPKs). CBL/CIPK complexes phosphorylate target proteins at the plasma membrane. Here, we report that dual lipid modification is required for CBL1 function and for localization of this calcium sensor at the plasma membrane. First, myristoylation targets CBL1 to the endoplasmic reticulum. Second, S-acylation is crucial for endoplasmic reticulum-to-plasma membrane trafficking via a novel cellular targeting pathway that is insensitive to brefeldin A. We found that a 12-amino acid peptide of CBL1 is sufficient to mediate dual lipid modification and to confer plasma membrane targeting. Moreover, the lipid modification status of the calcium sensor moiety determines the cellular localization of preassembled CBL/CIPK complexes. Our findings demonstrate the importance of S-acylation for regulating the spatial accuracy of Ca2+-decoding proteins and suggest a novel mechanism that enables the functional specificity of calcium sensor/kinase complexes.  相似文献   

12.
Protein S-acylation is an important post-translational modification in eukaryotes, regulating the subcellular localization, trafficking, stability, and activity of substrate proteins. The dynamic regulation of this reversible modification is mediated inversely by protein S-acyltransferases and de-S-acylation enzymes, but the de-S-acylation mechanism remains unclear in plant cells. Here, we characterized a group of putative protein de-S-acylation enzymes in Arabidopsis thaliana, including 11 members of Alpha/Beta Hydrolase Domain-containing Protein 17-like acyl protein thioesterases (ABAPTs). A robust system was then established for the screening of de-S-acylation enzymes of protein substrates in plant cells, based on the effects of substrate localization and confirmed via the protein S-acylation levels. Using this system, the ABAPTs, which specifically reduced the S-acylation levels and disrupted the plasma membrane localization of five immunity-related proteins, were identified respectively in Arabidopsis. Further results indicated that the de-S-acylation of RPM1-Interacting Protein 4, which was mediated by ABAPT8, resulted in an increase of cell death in Arabidopsis and Nicotiana benthamiana, supporting the physiological role of the ABAPTs in plants. Collectively, our current work provides a powerful and reliable system to identify the pairs of plant protein substrates and de-S-acylation enzymes for further studies on the dynamic regulation of plant protein S-acylation.

A robust screening system for ABHD17-like hydrolases was established to identify de-S-acylation enzymes of protein substrates in plant cells.  相似文献   

13.
Posttranslational modification of Ras protein has been shown to be critical for interaction with its effector molecules, including Saccharomyces cerevisiae adenylyl cyclase. However, the mechanism of its action was unknown. In this study, we used a reconstituted system with purified adenylyl cyclase and Ras proteins carrying various degrees of the modification to show that the posttranslational modification, especially the farnesylation step, is responsible for 5- to 10-fold increase in Ras-dependent activation of adenylyl cyclase activity even though it has no significant effect on their binding affinity. The stimulatory effect of farnesylation is found to depend on the association of adenylyl cyclase with 70-kDa adenylyl cyclase-associated protein (CAP), which was known to be required for proper in vivo response of adenylyl cyclase to Ras protein, by comparing the levels of Ras-dependent activation of purified adenylyl cyclase with and without bound CAP. The region of CAP required for this effect is mapped to its N-terminal segment of 168 amino acid residues, which coincides with the region required for the in vivo effect. Furthermore, the stimulatory effect is successfully reconstituted by in vitro association of CAP with the purified adenylyl cyclase molecule lacking the bound CAP. These results indicate that the association of adenylyl cyclase with CAP is responsible for the stimulatory effect of posttranslational modification of Ras on its activity and that this may be the mechanism underlying its requirement for the proper in vivo cyclic AMP response.  相似文献   

14.
Bioorthogonal chemical reporters are useful tools for visualizing and identifying post-translational modifications on proteins. Here we report the proteomic analysis of mammalian proteins targeted by a series of fatty acid chemical reporters ranging from myristic to stearic acid. The large-scale analysis of total cell lysates from fully solubilized Jurkat T cells identified known fatty-acylated proteins and many new candidates, including nuclear proteins and in particular histone H3 variants. We demonstrate that histones H3.1, H3.2, and H3.3 are modified with fatty acid chemical reporters and identify the conserved cysteine 110 as a new site of S-acylation on histone H3.2. This newly discovered modification of histone H3 could have implications for nuclear organization and chromatin regulation. The unbiased proteomic analysis of fatty-acylated proteins using chemical reporters has revealed a greater diversity of lipid-modified proteins in mammalian cells and identified a novel post-translational modification of histones.  相似文献   

15.
Fatty acylation of Src family kinases is essential for localization of the modified proteins to the plasma membrane and to plasma membrane rafts. It has been suggested that the presence of saturated fatty acyl chains on proteins is conducive for their insertion into liquid ordered lipid domains present in rafts. The ability of unsaturated dietary fatty acids to be attached to Src family kinases has not been investigated. Here we demonstrate that heterogeneous fatty acylation of Src family kinases occurs and that the nature of the attached fatty acid influences raft-mediated signal transduction. By using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, we show that in addition to 14:0 (myristate), 14:1 and 14:2 fatty acids can be attached to the N-terminal glycine of the Src family kinase Fyn when the growth media are supplemented with these dietary fatty acids. Moreover, we synthesized novel iodinated analogs of oleate and stearate, and we showed that heterogeneous S-acylation can occur on cysteine residues within Fyn as well as Galpha, GAP43, and Ras. Modification of Fyn with unsaturated or polyunsaturated fatty acids reduced its raft localization and resulted in decreased T cell signal transduction. These studies establish that heterogeneous fatty acylation is a widespread occurrence that serves to regulate signal transduction by membrane-bound proteins.  相似文献   

16.
14-3-3 proteins play an important role in a multitude of signalling pathways. The interactions between 14-3-3 and other signalling proteins, such as Raf and KSR (kinase suppressor of Ras), occur in a phospho-specific manner. Recently, a phosphorylation-independent interaction has been reported to occur between 14-3-3 and several proteins, for example 5-phosphatase, p75NTR-associated cell death executor (NADE) and the bacterial toxin Exoenzyme S (ExoS), an ADP-ribosyltransferase from Pseudomonas aeruginosa. In this study we have identified the amino acid residues on ExoS, which are responsible for its specific interaction with 14-3-3. Furthermore, we show that a peptide derived from ExoS, containing the 14-3-3 interaction site, effectively competes out the interaction between ExoS and 14-3-3. In addition, competition with this peptide blocks ExoS modification of Ras in our Ras modification assay. We show that the ExoS protein interacts with all isoforms of the 14-3-3 family tested. Moreover, in vivo an ExoS protein lacking the 14-3-3 binding site has a reduced capacity to ADP ribosylate cytoplasmic proteins, e.g. Ras, and shows a reduced capacity to change the morphology of infected cells.  相似文献   

17.
DHHC proteins catalyze the reversible S-acylation of proteins at cysteine residues, a modification important for regulating protein localization, stability, and activity. However, little is known about the kinetic mechanism of DHHC proteins. A high-performance liquid chromatography (HPLC), fluorescent peptide-based assay for protein S-acylation activity was developed to characterize mammalian DHHC2 and DHHC3. Time courses and substrate saturation curves allowed the determination of V(max) and K(m) values for both the peptide N-myristoylated-GCG and palmitoyl-coenzyme A. DHHC proteins acylate themselves upon incubation with palmitoyl-CoA, which is hypothesized to reflect a transient acyl enzyme transfer intermediate. Single turnover assays with DHHC2 and DHHC3 demonstrated that a radiolabeled acyl group on the enzyme transferred to the protein substrate, consistent with a two-step ping-pong mechanism. Enzyme autoacylation and acyltransfer to substrate displayed the same acyl-CoA specificities, further supporting a two-step mechanism. Interestingly, DHHC2 efficiently transferred acyl chains 14 carbons and longer, whereas DHHC3 activity was greatly reduced by acyl-CoAs with chain lengths longer than 16 carbons. The rate and extent of autoacylation of DHHC3, as well as the rate of acyl chain transfer to protein substrate, were reduced with stearoyl-CoA when compared with palmitoyl-CoA. This is the first observation of lipid substrate specificity among DHHC proteins and may account for the differential S-acylation of proteins observed in cells.  相似文献   

18.
TIP GROWTH DEFECTIVE1 (TIP1) of Arabidopsis thaliana affects cell growth throughout the plant and has a particularly strong effect on root hair growth. We have identified TIP1 by map-based cloning and complementation of the mutant phenotype. TIP1 encodes an ankyrin repeat protein with a DHHC Cys-rich domain that is expressed in roots, leaves, inflorescence stems, and floral tissue. Two homologues of TIP1 in yeast (Saccharomyces cerevisiae) and human (Homo sapiens) have been shown to have S-acyl transferase (also known as palmitoyl transferase) activity. S-acylation is a reversible hydrophobic protein modification that offers swift, flexible control of protein hydrophobicity and affects protein association with membranes, signal transduction, and vesicle trafficking within cells. We show that TIP1 binds the acyl group palmitate, that it can rescue the morphological, temperature sensitivity, and yeast casein kinase2 localization defects of the yeast S-acyl transferase mutant akr1Delta, and that inhibition of acylation in wild-type Arabidopsis roots reproduces the Tip1- mutant phenotype. Our results demonstrate that S-acylation is essential for normal plant cell growth and identify a plant S-acyl transferase, an essential research tool if we are to understand how this important, reversible lipid modification operates in plant cells.  相似文献   

19.
While the Ras C-terminal CAAX sequence signals modification by a 15-carbon farnesyl isoprenoid, the majority of isoprenylated proteins in mammalian cells are modified instead by a 20-carbon geranylgeranyl moiety. To determine the structural and functional basis for modification of proteins by a specific isoprenoid group, we have generated chimeric Ras proteins containing C-terminal CAAX sequences (CVLL and CAIL) from geranylgeranyl-modified proteins and a chimeric Krev-1 protein containing the H-Ras C-terminal CAAX sequence (CVLS). Our results demonstrate that both oncogenic Ras transforming activity and Krev-1 antagonism of Ras transforming activity can be promoted by either farnesyl or geranylgeranyl modification. Similarly, geranylgeranyl-modified normal Ras [Ras(WT)CVLL], when overexpressed, exhibited the same level of transforming activity as the authentic farnesyl-modified normal Ras protein. Therefore, farnesyl and geranylgeranyl moieties are functionally interchangeable for these biological activities. In contrast, expression of moderate levels of geranylgeranyl-modified normal Ras inhibited the growth of untransformed NIH 3T3 cells. This growth inhibition was overcome by coexpression of the mutant protein with oncogenic Ras or Raf, but not with oncogenic Src or normal Ras. The similar growth-inhibiting activities of Ras(WT)CVLL and the previously described Ras(17N) dominant inhibitory mutant suggest that geranylgeranyl-modified normal Ras may exert its growth-inhibiting action by perturbing endogenous Ras function. These results suggest that normal Ras function may specifically require protein modification by a farnesyl, but not a geranylgeranyl, isoprenoid.  相似文献   

20.
Proteins that terminate with a consensus sequence known as CAAX undergo a series of posttranslational modifications that include polyisoprenylation, endoproteolysis, and carboxyl methylation. These modifications render otherwise hydrophilic proteins hydrophobic at their C termini such that they associate with membranes. Whereas prenylation occurs in the cytosol, postprenylation processing is accomplished on the cytoplasmic surface of the endoplasmic reticulum and Golgi apparatus. Among the numerous CAAX proteins encoded in mammalian genomes are many signaling molecules such as monomeric GTPases, including the Ras proteins that play an important role in cancer. In the course of their processing, nascent Ras proteins traffic from their site of synthesis in the cytosol to the endomembrane and then out to the plasma membrane (PM) by at least two pathways. Recently, retrograde pathways have been discovered that deliver mature Ras from the PM back to the Golgi. The Golgi has been identified as a platform upon which Ras can signal. Thus, the subcellular trafficking of Ras proteins has the potential to increase the complexity of Ras signaling by adding a spatial dimension. The complexity of Ras trafficking also affords a wider array of potential targets for the discovery of drugs that might inhibit tumors by interfering with Ras trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号