首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 199 毫秒
1.
Here we carry out an examination of shape complementarity as a criterion in protein-protein docking and binding. Specifically, we examine the quality of shape complementarity as a critical determinant not only in the docking of 26 protein-protein "bound" complexed cases, but in particular, of 19 "unbound" protein-protein cases, where the structures have been determined separately. In all cases, entire molecular surfaces are utilized in the docking, with no consideration of the location of the active site, or of particular residues/atoms in either the receptor or the ligand that participate in the binding. To evaluate the goodness of the strictly geometry-based shape complementarity in the docking process as compared to the main favorable and unfavorable energy components, we study systematically a potential correlation between each of these components and the root mean square deviation (RMSD) of the "unbound" protein-protein cases. Specifically, we examine the non-polar buried surface area, polar buried surface area, buried surface area relating to groups bearing unsatisfied buried charges, and the number of hydrogen bonds in all docked protein-protein interfaces. For these cases, where the two proteins have been crystallized separately, and where entire molecular surfaces are considered without a predefinition of the binding site, no correlation is observed. None of these parameters appears to consistently improve on shape complementarity in the docking of unbound molecules. These findings argue that simplicity in the docking process, utilizing geometrical shape criteria may capture many of the essential features in protein-protein docking. In particular, they further reinforce the long held notion of the importance of molecular surface shape complementarity in the binding, and hence in docking. This is particularly interesting in light of the fact that the structures of the docked pairs have been determined separately, allowing side chains on the surface of the proteins to move relatively freely. This study has been enabled by our efficient, computer vision-based docking algorithms. The fast CPU matching times, on the order of minutes on a PC, allow such large-scale docking experiments of large molecules, which may not be feasible by other techniques. Proteins 1999;36:307-317.  相似文献   

2.
Zhang Q  Sanner M  Olson AJ 《Proteins》2009,75(2):453-467
Biological complexes typically exhibit intermolecular interfaces of high shape complementarity. Many computational docking approaches use this surface complementarity as a guide in the search for predicting the structures of protein-protein complexes. Proteins often undergo conformational changes to create a highly complementary interface when associating. These conformational changes are a major cause of failure for automated docking procedures when predicting binding modes between proteins using their unbound conformations. Low resolution surfaces in which high frequency geometric details are omitted have been used to address this problem. These smoothed, or blurred, surfaces are expected to minimize the differences between free and bound structures, especially those that are due to side chain conformations or small backbone deviations. Despite the fact that this approach has been used in many docking protocols, there has yet to be a systematic study of the effects of such surface smoothing on the shape complementarity of the resulting interfaces. Here we investigate this question by computing shape complementarity of a set of 66 protein-protein complexes represented by multiresolution blurred surfaces. Complexed and unbound structures are available for these protein-protein complexes. They are a subset of complexes from a nonredundant docking benchmark selected for rigidity (i.e. the proteins undergo limited conformational changes between their bound and unbound states). In this work, we construct the surfaces by isocontouring a density map obtained by accumulating the densities of Gaussian functions placed at all atom centers of the molecule. The smoothness or resolution is specified by a Gaussian fall-off coefficient, termed "blobbyness." Shape complementarity is quantified using a histogram of the shortest distances between two proteins' surface mesh vertices for both the crystallographic complexes and the complexes built using the protein structures in their unbound conformation. The histograms calculated for the bound complex structures demonstrate that medium resolution smoothing (blobbyness = -0.9) can reproduce about 88% of the shape complementarity of atomic resolution surfaces. Complexes formed from the free component structures show a partial loss of shape complementarity (more overlaps and gaps) with the atomic resolution surfaces. For surfaces smoothed to low resolution (blobbyness = -0.3), we find more consistency of shape complementarity between the complexed and free cases. To further reduce bad contacts without significantly impacting the good contacts we introduce another blurred surface, in which the Gaussian densities of flexible atoms are reduced. From these results we discuss the use of shape complementarity in protein-protein docking.  相似文献   

3.
The combination of docking algorithms with NMR data has been developed extensively for the studies of protein-ligand interactions. However, to extend this development for the studies of protein-protein interactions, the intermolecular NOE constraints, which are needed, are more difficult to access. In the present work, we describe a new approach that combines an ab initio docking calculation and the mapping of an interaction site using chemical shift variation analysis. The cytochrome c553-ferredoxin complex is used as a model of numerous electron-transfer complexes. The 15N-labeling of both molecules has been obtained, and the mapping of the interacting site on each partner, respectively, has been done using HSQC experiments. 1H and 15N chemical shift analysis defines the area of both molecules involved in the recognition interface. Models of the complex were generated by an ab initio docking software, the BiGGER program (bimolecular complex generation with global evaluation and ranking). This program generates a population of protein-protein docked geometries ranked by a scoring function, combining relevant stabilization parameters such as geometric complementarity surfaces, electrostatic interactions, desolvation energy, and pairwise affinities of amino acid side chains. We have implemented a new module that includes experimental input (here, NMR mapping of the interacting site) as a filter to select the accurate models. Final structures were energy minimized using the X-PLOR software and then analyzed. The best solution has an interface area (1037.4 A2) falling close to the range of generally observed recognition interfaces, with a distance of 10.0 A between the redox centers.  相似文献   

4.
5.
The high-resolution refinement of docked protein-protein complexes can provide valuable structural and mechanistic insight into protein complex formation complementing experiment. Monte Carlo (MC) based approaches are frequently applied to sample putative interaction geometries of proteins including also possible conformational changes of the binding partners. In order to explore efficiency improvements of the MC sampling, several enhanced sampling techniques, including temperature or Hamiltonian replica exchange and well-tempered ensemble approaches, have been combined with the MC method and were evaluated on 20 protein complexes using unbound partner structures. The well-tempered ensemble method combined with a 2-dimensional temperature and Hamiltonian replica exchange scheme (WTE-H-REMC) was identified as the most efficient search strategy. Comparison with prolonged MC searches indicates that the WTE-H-REMC approach requires approximately 5 times fewer MC steps to identify near native docking geometries compared to conventional MC searches.  相似文献   

6.
Evaluation of Surface Complementarity, Hydrogen bonding, and Electrostatic interaction in molecular Recognition (ESCHER) is a new docking procedure consisting of three modules that work in series. The first module evaluates the geometric complementarity and produces a set of rough solutions for the docking problem. The second module identifies molecular collisions within those solutions, and the third evaluates their electrostatic complementarity. We describe the algorithm and its application to the docking of cocrystallized protein domains and unbound components of protein-protein complexes. Furthermore, ESCHER has been applied to the reassociation of secondary and supersecondary structure elements. The possibility of applying a docking method to the problem of protein structure prediction is discussed. Proteins 28:556–567, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
The methods of continuum electrostatics are used to calculate the binding free energies of a set of protein-protein complexes including experimentally determined structures as well as other orientations generated by a fast docking algorithm. In the native structures, charged groups that are deeply buried were often found to favor complex formation (relative to isosteric nonpolar groups), whereas in nonnative complexes generated by a geometric docking algorithm, they were equally likely to be stabilizing as destabilizing. These observations were used to design a new filter for screening docked conformations that was applied, in conjunction with a number of geometric filters that assess shape complementarity, to 15 antibody-antigen complexes and 14 enzyme-inhibitor complexes. For the bound docking problem, which is the major focus of this paper, native and near-native solutions were ranked first or second in all but two enzyme-inhibitor complexes. Less success was encountered for antibody-antigen complexes, but in all cases studied, the more complete free energy evaluation was able to identify native and near-native structures. A filter based on the enrichment of tyrosines and tryptophans in antibody binding sites was applied to the antibody-antigen complexes and resulted in a native and near-native solution being ranked first and second in all cases. A clear improvement over previously reported results was obtained for the unbound antibody-antigen examples as well. The algorithm and various filters used in this work are quite efficient and are able to reduce the number of plausible docking orientations to a size small enough so that a final more complete free energy evaluation on the reduced set becomes computationally feasible.  相似文献   

8.
Kozakov D  Brenke R  Comeau SR  Vajda S 《Proteins》2006,65(2):392-406
The Fast Fourier Transform (FFT) correlation approach to protein-protein docking can evaluate the energies of billions of docked conformations on a grid if the energy is described in the form of a correlation function. Here, this restriction is removed, and the approach is efficiently used with pairwise interaction potentials that substantially improve the docking results. The basic idea is approximating the interaction matrix by its eigenvectors corresponding to the few dominant eigenvalues, resulting in an energy expression written as the sum of a few correlation functions, and solving the problem by repeated FFT calculations. In addition to describing how the method is implemented, we present a novel class of structure-based pairwise intermolecular potentials. The DARS (Decoys As the Reference State) potentials are extracted from structures of protein-protein complexes and use large sets of docked conformations as decoys to derive atom pair distributions in the reference state. The current version of the DARS potential works well for enzyme-inhibitor complexes. With the new FFT-based program, DARS provides much better docking results than the earlier approaches, in many cases generating 50% more near-native docked conformations. Although the potential is far from optimal for antibody-antigen pairs, the results are still slightly better than those given by an earlier FFT method. The docking program PIPER is freely available for noncommercial applications.  相似文献   

9.
Bordner AJ  Gorin AA 《Proteins》2007,68(2):488-502
Computational prediction of protein complex structures through docking offers a means to gain a mechanistic understanding of protein interactions that mediate biological processes. This is particularly important as the number of experimentally determined structures of isolated proteins exceeds the number of structures of complexes. A comprehensive docking procedure is described in which efficient sampling of conformations is achieved by matching surface normal vectors, fast filtering for shape complementarity, clustering by RMSD, and scoring the docked conformations using a supervised machine learning approach. Contacting residue pair frequencies, residue propensities, evolutionary conservation, and shape complementarity score for each docking conformation are used as input data to a Random Forest classifier. The performance of the Random Forest approach for selecting correctly docked conformations was assessed by cross-validation using a nonredundant benchmark set of X-ray structures for 93 heterodimer and 733 homodimer complexes. The single highest rank docking solution was the correct (near-native) structure for slightly more than one third of the complexes. Furthermore, the fraction of highly ranked correct structures was significantly higher than the overall fraction of correct structures, for almost all complexes. A detailed analysis of the difficult to predict complexes revealed that the majority of the homodimer cases were explained by incorrect oligomeric state annotation. Evolutionary conservation and shape complementarity score as well as both underrepresented and overrepresented residue types and residue pairs were found to make the largest contributions to the overall prediction accuracy. Finally, the method was also applied to docking unbound subunit structures from a previously published benchmark set.  相似文献   

10.
Li CH  Ma XH  Chen WZ  Wang CX 《Protein engineering》2003,16(4):265-269
An efficient 'soft docking' algorithm is described to assist the prediction of protein-protein association using three-dimensional structures of molecules. The basic tools are the 'simplified protein' model and the docking algorithm of Wodak and Janin. The side chain flexibility of Arg, Lys, Asp, Glu and Met residues at the protein surface is taken into account. The complex type-dependent filtering technique on the basis of the geometric matching, hydrophobicity and electrostatic complementarity is used to select candidate binding modes. Subsequently, we calculate a scoring function which includes electrostatic and desolvation energy terms. In the 44 complexes tested including enzyme-inhibitor, antibody-antigen and other complexes, native-like structures were all found, of which 30 were ranked in the top 20. Thus, our soft docking algorithm has the potential to predict protein-protein recognition.  相似文献   

11.
Transferring the biological function of one protein to another is a key issue in understanding the structure and function relationship of proteins. We have developed a strategy for grafting protein-protein interaction epitopes. As a first step, residues at the interface of the ligand protein which strongly interact with the receptor protein were identified. Then protein scaffolds were docked onto receptor protein based on geometric complementarity. Only high docking score matches were saved. For each saved match, the scaffold protein was accepted if it had suitable positions for grafting key interaction residues of the ligand protein. These candidate residues were mutated to corresponding residues in the ligand protein at each relevant position and the mutated scaffold protein was co-minimized with receptor protein. Finally, the minimized complexes were evaluated by a scoring function deduced from statistical analysis of rigid binding data sets. As a test case, the binding epitope of barstar, the inhibitor of barnase, was grafted onto smaller proteins. Pheromone Er-1 (PDB entry 1erc) has been found to be a good scaffold. The calculated binding free energy for mutated Pheromone Er-1 is equivalent to that of barstar.  相似文献   

12.
The protein docking problem has two major aspects: sampling conformations and orientations, and scoring them for fit. To investigate the extent to which the protein docking problem may be attributed to the sampling of ligand side‐chain conformations, multiple conformations of multiple residues were calculated for the uncomplexed (unbound) structures of protein ligands. These ligand conformations were docked into both the complexed (bound) and unbound conformations of the cognate receptors, and their energies were evaluated using an atomistic potential function. The following questions were considered: (1) does the ensemble of precalculated ligand conformations contain a structure similar to the bound form of the ligand? (2) Can the large number of conformations that are calculated be efficiently docked into the receptors? (3) Can near‐native complexes be distinguished from non‐native complexes? Results from seven test systems suggest that the precalculated ensembles do include side‐chain conformations similar to those adopted in the experimental complexes. By assuming additivity among the side chains, the ensemble can be docked in less than 12 h on a desktop computer. These multiconformer dockings produce near‐native complexes and also non‐native complexes. When docked against the bound conformations of the receptors, the near‐native complexes of the unbound ligand were always distinguishable from the non‐native complexes. When docked against the unbound conformations of the receptors, the near‐native dockings could usually, but not always, be distinguished from the non‐native complexes. In every case, docking the unbound ligands with flexible side chains led to better energies and a better distinction between near‐native and non‐native fits. An extension of this algorithm allowed for docking multiple residue substitutions (mutants) in addition to multiple conformations. The rankings of the docked mutant proteins correlated with experimental binding affinities. These results suggest that sampling multiple residue conformations and residue substitutions of the unbound ligand contributes to, but does not fully provide, a solution to the protein docking problem. Conformational sampling allows a classical atomistic scoring function to be used; such a function may contribute to better selectivity between near‐native and non‐native complexes. Allowing for receptor flexibility may further extend these results.  相似文献   

13.
Accurate prediction of protein-DNA complexes could provide an important stepping stone towards a thorough comprehension of vital intracellular processes. Few attempts were made to tackle this issue, focusing on binding patch prediction, protein function classification and distance constraints-based docking. We introduce ParaDock: a novel ab initio protein-DNA docking algorithm. ParaDock combines short DNA fragments, which have been rigidly docked to the protein based on geometric complementarity, to create bent planar DNA molecules of arbitrary sequence. Our algorithm was tested on the bound and unbound targets of a protein-DNA benchmark comprised of 47 complexes. With neither addressing protein flexibility, nor applying any refinement procedure, CAPRI acceptable solutions were obtained among the 10 top ranked hypotheses in 83% of the bound complexes, and 70% of the unbound. Without requiring prior knowledge of DNA length and sequence, and within <2?h per target on a standard 2.0?GHz single processor CPU, ParaDock offers a fast ab initio docking solution.  相似文献   

14.
MOTIVATION: Public resources for studying protein interfaces are necessary for better understanding of molecular recognition and developing intermolecular potentials, search procedures and scoring functions for the prediction of protein complexes. RESULTS: The first release of the DOCKGROUND resource implements a comprehensive database of co-crystallized (bound-bound) protein-protein complexes, providing foundation for the upcoming expansion to unbound (experimental and simulated) protein-protein complexes, modeled protein-protein complexes and systematic sets of docking decoys. The bound-bound part of DOCKGROUND is a relational database of annotated structures based on the Biological Unit file (Biounit) provided by the RCSB as a separated file containing probable biological molecule. DOCKGROUND is automatically updated to reflect the growth of PDB. It contains 67,220 pairwise complexes that rely on 14,913 Biounit entries from 34,778 PDB entries (January 30, 2006). The database includes a dynamic generation of non-redundant datasets of pairwise complexes based either on the structural similarity (SCOP classification) or on user-defined sequence identity. The growing DOCKGROUND resource is designed to become a comprehensive public environment for developing and validating new methodologies for modeling of protein interactions. AVAILABILITY: DOCKGROUND is available at http://dockground.bioinformatics.ku.edu. The current first release implements the bound-bound part.  相似文献   

15.
We present a computational procedure for modeling protein-protein association and predicting the structures of protein-protein complexes. The initial sampling stage is based on an efficient Brownian dynamics algorithm that mimics the physical process of diffusional association. Relevant biochemical data can be directly incorporated as distance constraints at this stage. The docked configurations are then grouped with a hierarchical clustering algorithm into ensembles that represent potential protein-protein encounter complexes. Flexible refinement of selected representative structures is done by molecular dynamics simulation. The protein-protein docking procedure was thoroughly tested on 10 structurally and functionally diverse protein-protein complexes. Starting from X-ray crystal structures of the unbound proteins, in 9 out of 10 cases it yields structures of protein-protein complexes close to those determined experimentally with the percentage of correct contacts >30% and interface backbone RMSD <4 A. Detailed examination of all the docking cases gives insights into important determinants of the performance of the computational approach in modeling protein-protein association and predicting of protein-protein complex structures.  相似文献   

16.
Müller W  Sticht H 《Proteins》2007,67(1):98-111
In this work, we developed a protein-specifically adapted scoring function and applied it to the reranking of protein-protein docking solutions generated with a conventional docking program. The approach was validated using experimentally determined structures of the bacterial HPr-protein in complex with four structurally nonhomologous binding partners as an example. A sufficiently large data basis for the generation of protein-specifically adapted pair potentials was generated by modeling all orthologous complexes for each type of interaction resulting in a total of 224 complexes. The parameters for potential generation were systematically varied and resulted in a total of 66,132 different scoring functions that were tested for their ability of successful reranking of 1000 docking solutions generated from modeled structures of the unbound binding partners. Parameters that proved critical for the generation of good scoring functions were the distance cutoff used for the generation of the pair potential, and an additional cutoff that allows a proper weighting of conserved and nonconserved contacts in the interface. Compared to the original scoring function, application of this novel type of scoring functions resulted in a significant accumulation of acceptable docking solutions within the first 10 ranks. Depending on the type of complex investigated one to five acceptable complex geometries are found among the 10 highest-ranked solutions and for three of the four systems tested, an acceptable solution was placed on the first rank.  相似文献   

17.
Shentu Z  Al Hasan M  Bystroff C  Zaki MJ 《Proteins》2008,70(3):1056-1073
We describe an efficient method for partial complementary shape matching for use in rigid protein-protein docking. The local shape features of a protein are represented using boolean data structures called Context Shapes. The relative orientations of the receptor and ligand surfaces are searched using precalculated lookup tables. Energetic quantities are derived from shape complementarity and buried surface area computations, using efficient boolean operations. Preliminary results indicate that our context shapes approach outperforms state-of-the-art geometric shape-based rigid-docking algorithms.  相似文献   

18.
Computational docking approaches are important as a source of protein-protein complexes structures and as a means to understand the principles of protein association. A key element in designing better docking approaches, including search procedures, potentials, and scoring functions is their validation on experimentally determined structures. Thus, the databases of such structures (benchmark sets) are important. The previous, first release of the DOCKGROUND resource (Douguet et al., Bioinformatics 2006; 22:2612-2618) implemented a comprehensive database of cocrystallized (bound) protein-protein complexes in a relational database of annotated structures. The current release adds important features to the set of bound structures, such as regularly updated downloadable datasets: automatically generated nonredundant set, built according to most common criteria, and a manually curated set that includes only biological nonobligate complexes along with a number of additional useful characteristics. The main focus of the current release is unbound (experimental and simulated) protein-protein complexes. Complexes from the bound dataset are used to identify crystallized unbound analogs. If such analogs do not exist, the unbound structures are simulated by rotamer library optimization. Thus, the database contains comprehensive sets of complexes suitable for large scale benchmarking of docking algorithms. Advanced methodologies for simulating unbound conformations are being explored for the next release. The future releases will include datasets of modeled protein-protein complexes, and systematic sets of docking decoys obtained by different docking algorithms. The growing DOCKGROUND resource is designed to become a comprehensive public environment for developing and validating new docking methodologies.  相似文献   

19.
A protein-protein docking approach has been developed based on a reduced protein representation with up to three pseudo atoms per amino acid residue. Docking is performed by energy minimization in rotational and translational degrees of freedom. The reduced protein representation allows an efficient search for docking minima on the protein surfaces within. During docking, an effective energy function between pseudo atoms has been used based on amino acid size and physico-chemical character. Energy minimization of protein test complexes in the reduced representation results in geometries close to experiment with backbone root mean square deviations (RMSDs) of approximately 1 to 3 A for the mobile protein partner from the experimental geometry. For most test cases, the energy-minimized experimental structure scores among the top five energy minima in systematic docking studies when using both partners in their bound conformations. To account for side-chain conformational changes in case of using unbound protein conformations, a multicopy approach has been used to select the most favorable side-chain conformation during the docking process. The multicopy approach significantly improves the docking performance, using unbound (apo) binding partners without a significant increase in computer time. For most docking test systems using unbound partners, and without accounting for any information about the known binding geometry, a solution within approximately 2 to 3.5 A RMSD of the full mobile partner from the experimental geometry was found among the 40 top-scoring complexes. The approach could be extended to include protein loop flexibility, and might also be useful for docking of modeled protein structures.  相似文献   

20.
Chen R  Weng Z 《Proteins》2002,47(3):281-294
A comprehensive docking study was performed on 27 distinct protein-protein complexes. For 13 test systems, docking was performed with the unbound X-ray structures of both the receptor and the ligand. For the remaining systems, the unbound X-ray structure of only molecule was available; therefore the bound structure for the other molecule was used. Our method optimizes desolvation, shape complementarity, and electrostatics using a Fast Fourier Transform algorithm. A global search in the rotational and translational space without any knowledge of the binding sites was performed for all proteins except nine antibodies recognizing antigens. For these antibodies, we docked their well-characterized binding site-the complementarity-determining region defined without information of the antigen-to the entire surface of the antigen. For 24 systems, we were able to find near-native ligand orientations (interface C(alpha) root mean square deviation less than 2.5 A from the crystal complex) among the top 2,000 choices. For three systems, our algorithm could identify the correct complex structure unambiguously. For 13 other complexes, we either ranked a near-native structure in the top 20 or obtained 20 or more near-native structures in the top 2,000 or both. The key feature of our algorithm is the use of target functions that are highly tolerant to conformational changes upon binding. If combined with a post-processing method, our algorithm may provide a general solution to the unbound docking problem. Our program, called ZDOCK, is freely available to academic users (http://zlab.bu.edu/~rong/dock/).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号