首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A primary role of developmental instability in sexual selection   总被引:1,自引:0,他引:1  
In evolutionary biology, fluctuating asymmetry (FA) is thought to reveal developmental instability (DI, inability to buffer development against perturbations), but its adaptive and genetic bases are being debated. In other fields, such as human clinical genetics, DI is being assessed as incidence of minor morphological abnormalities (MMAs) and used to predict certain fitness outcomes. Here, for the first time, we combine these complementary measures of DI in sexual selection and quantitative genetic studies of a natural population. Comprehensive multivariate analyses demonstrate that FA and MMAs in a condition-dependent sexual ornament, the male Drosophila bipectinata sex comb used in courtship, are sole significant targets of selection favouring their reduced expression in New Caledonia. Comb FA and MMAs are positively correlated, confirming that each are linked to a common buffering system. Ornament size and DI (as FA and MMAs) are positively correlated, genetically and phenotypically, contrary to theoretical expectation of negative size-FA scaling under the assumption that FA reveals overall genetic quality. There exists significant additive genetic variance for MMAs, demonstrating their evolutionary potential. Ornament DI in New Caledonia is markedly elevated compared with populations where such selection was not detected, suggesting that the increased population-level DI is capacitating adaptive evolution.  相似文献   

2.
J. A. Kieser 《Genetica》1993,89(1-3):219-225
Despite major advances in the study of molecular and morphological evolution a substantial rift still exists between these two fields of endeavour. Phenotypic alteration through evolution results from a reallocation of resources which has as its origin the interplay between the production capability of the genes on the one side and the acquisitional need of the phenotype on the other. This process of allocation is coordinated through the environmental arena and is subject to mechanical, biological and economical constraints. Differences in the rates of morphological change at any level (molecular, cellular, organismal or population) depend on the level of environmental challenge, on the availability of variability and on the economics of supply and demand. Short run changes in response to severe environmental stress will be sudden and energetically expensive and will rely on stress-induced unmasking of genetic variability and loss of canalization. Long run changes will be gradual, energetically less costly and less dependent on genetic correlations.  相似文献   

3.
Whether or not developmental instability (DI) has evolutionary potential is subject to much debate. Generally, studies fail to detect significant heritability for fluctuating asymmetry (FA), a trait assumed to reflect DI. In addition, between‐trait correlations in FA are low, suggesting that DI is trait‐ rather than individual‐specific. Among the various attempts to explain these patterns, the overall weak correlation between FA and DI at the individual level has received most attention. Presently, the concept of hypothetical repeatability (R) of individual FA allows us to correct for this weak relationship, transforming patterns of FA into unbiased patterns of DI. By applying R to data presented in the literature, we show that heritability of DI remains lower than predicted but between‐trait correlations in DI substantially increase after transformation. We further provide evidence that DI changes from a trait‐ to an individual‐specific property with higher values of R. As increasing hypothetical repeatability might co‐occur with increased environmental or genetic stress, we discuss the potential implications of our results for the study of evolution of stress resistance. From this we conclude that there is an urgent need for studies that compare the evolutionary potential of developmental instability under a variety of stress conditions.  相似文献   

4.
The maintenance of heritable variation through social competition   总被引:1,自引:0,他引:1  
The paradoxical persistence of heritable variation for fitness-related traits is an evolutionary conundrum that remains a preeminent problem in evolutionary biology. Here we describe a simple mechanism in which social competition results in the evolutionary maintenance of heritable variation for fitness related traits. We demonstrate this mechanism using a genetic model with two primary assumptions: the expression of a trait depends upon success in social competition for limited resources; and competitive success of a genotype depends on the genotypes that it competes against. We find that such social competition generates heritable (additive) genetic variation for "competition-dependent" traits. This heritable variation is not eroded by continuous directional selection because, rather than leading to fixation of favored alleles, selection leads instead to allele frequency cycling due to the concerted coevolution of the social environment with the effects of alleles. Our results provide a mechanism for the maintenance of heritable variation in natural populations and suggest an area for research into the importance of competition in the genetic architecture of fitness related traits.  相似文献   

5.
The effect of stressful and nonstressful rearing temperatures on phenotypic variation of four quantitative characters (thorax length, wing length, number of sternopleural chaetae, number of arista branches) and on developmental stability (fluctuating asymmetry) of the three latter characters was estimated in two Drosophila species: Drosophila melanogaster and Drosophila buzzatii . In both species, a general trend for increasing of phenotypic variation and fluctuating asymmetry at stress temperatures was observed; in fluctuating asymmetry, this effect was more pronounced. An increase of phenotypic variation under stress was shown for all characters examined except sternopleural chaeta number in D. buzzatii . Comparison of species responses suggests that the increase of variation in D. melanogaster was somewhat higher than in D. buzzatii .  相似文献   

6.
Hybrids from crosses of different species have been reported to display decreased developmental stability when compared to their pure species, which is conventionally attributed to a breakdown of coadapted gene complexes. Drosophila subobscura and its close relative D. madeirensis were hybridized in the laboratory to test the hypothesis that genuine fluctuating asymmetry, measured as the within-individual variance between right and left wings that results from random perturbations in development, would significantly increase after interspecific hybridization. When sires of D. subobscura were mated to heterospecific females following a hybrid half-sib breeding design, F1 hybrid females showed a large bilateral asymmetry with a substantial proportion of individuals having an asymmetric index larger than 5% of total wing size. Such an anomaly, however, cannot be plainly explained by an increase of developmental instability in hybrids but is the result of some aberrant developmental processes. Our findings suggest that interspecific hybrids are as able as their parents to buffer developmental noise, notwithstanding the fact that their proper bilateral development can be harshly compromised. Together with the low correspondence between the co-variation structures of the interindividual genetic components and the within-individual ones from a Procrustes analysis, our data also suggest that the underlying processes that control (genetic) canalization and developmental stability do not share a common mechanism. We argue that the conventional account of decreased developmental stability in interspecific hybrids needs to be reappraised.  相似文献   

7.
Artificial selection of microbiota opens new avenues for improving plants. However, reported results lack consistency. We hypothesised that the success in artificial selection of microbiota depends on the stabilisation of community structure. In a ten-generation experiment involving 1,800 plants, we selected rhizosphere microbiota of Brachypodium distachyon associated with high or low leaf greenness, a proxy of plant performance. The microbiota structure showed strong fluctuations during an initial transitory phase, with no detectable leaf greenness heritability. After five generations, the microbiota structure stabilised, concomitantly with heritability in leaf greenness. Selection, initially ineffective, did successfully alter the selected property as intended, especially for high selection. We show a remarkable correlation between the variability in plant traits and selected microbiota structures, revealing two distinct sub-communities associated with high or low leaf greenness, whose abundance was significantly steered by directional selection. Understanding microbiota structure stabilisation will improve the reliability of artificial microbiota selection.  相似文献   

8.
Developmental instability (DI) is the sensitivity of a developing trait to random noise and can be measured by degrees of directionally random asymmetry [fluctuating asymmetry (FA)]. FA has been shown to increase with loss of genetic variation and inbreeding as measures of genetic stress, but associations vary among studies. Directional selection and evolutionary change of traits have been hypothesized to increase the average levels of FA of these traits and to increase the association strength between FA and population‐level genetic variation. We test these two hypotheses in three‐spined stickleback (Gasterosteus aculeatus L.) populations that recently colonized the freshwater habitat. Some traits, like lateral bone plates, length of the pelvic spine, frontal gill rakers and eye size, evolved in response to selection regimes during colonization. Other traits, like distal gill rakers and number of pelvic fin rays, did not show such phenotypic shifts. Contrary to a priori predictions, average FA did not systematically increase in traits that were under presumed directional selection, and the increases observed in a few traits were likely to be attributable to other factors. However, traits under directional selection did show a weak but significantly stronger negative association between FA and selectively neutral genetic variation at the population level compared with the traits that did not show an evolutionary change during colonization. These results support our second prediction, providing evidence that selection history can shape associations between DI and population‐level genetic variation at neutral markers, which potentially reflect genetic stress. We argue that this might explain at least some of the observed heterogeneities in the patterns of asymmetry.  相似文献   

9.
The role of developmental instability (DI), as measured by fluctuating asymmetry (FA), in evolutionary biology has been the focus of a wealth of research for more than half a century. In spite of this long period and many published papers, our current state of knowledge reviewed here only allows us to conclude that patterns are heterogeneous and that very little is known about the underlying causes of this heterogeneity. In addition, the statistical properties of FA as a measure of DI are only poorly grasped because of a general lack of understanding of the underlying mechanisms that drive DI. If we want to avoid that this area of research becomes abandoned, more efforts should be made to understand the observed heterogeneity, and attempts should be made to develop a unifying statistical protocol. More specifically, and perhaps most importantly, it is argued here that more attention should be paid to the usefulness of FA as a measure of DI since many factors might blur this relationship. Furthermore, the genetic architecture, associations with fitness and the importance of compensatory growth should be investigated under a variety of stress situations. In addition, more focus should be directed to the underlying mechanisms of DI as well as how these processes map to the observable phenotype. These insights could yield more efficient statistical models and a unified approach to the analysis of patterns in FA and DI. The study of both DI and canalization is indispensable to obtain better insights in their possible common origin, especially because both have been suggested to play a role in both micro- and macro-evolutionary processes.  相似文献   

10.
Although numerous studies have found that fluctuating asymmetry (FA) can have a heritable component, the genetic and developmental basis of FA is poorly understood. We used a developmental model of a trait, according to a diffusion-threshold process, whose parameters are under genetic control. We added a small amount of random variation to the parameter values of this model to simulate developmental noise. As a result of the nonlinearity of the model, different genotypes differed in their sensitivity to developmental noise, even though the noise is completely random and independent of the genotype. The heritable component of FA can thus be understood as genetically modulated expression of variation that is itself entirely nongenetic. The loci responsible for this genetic variation of FA are the same that affect the left/right mean of the trait, showing that genetic variation for FA does not require genes that specifically control FA. Furthermore, the model offers alternative explanations for phenomena widely discussed in the literature on FA, for instance, the correlations between FA and heterozygosity and between FA and trait size. The model underscores the importance of dominance and epistasis, and therefore unites the study of FA with the classical theory of quantitative genetics.  相似文献   

11.
Abstract Fluctuating asymmetry (FA) is frequently used as a measure of developmental instability (DI). Assuming a genetic basis to DI, many have argued that FA may be a good indicator of genetic quality to potential mates and to human managers of populations. Unfortunately FA is a poor indicator of DI, making it very difficult to verify this assertion. A recent review of the literature suggests that previous studies of the inheritance of FA and DI using half‐sib covariances and parent–offspring regression have been unable to put meaningful limits on the heritability of FA and DI because of the extremely low power of the experiments performed. In this study, we consider the power of artificial selection on FA as an alternative approach to studying the inheritance of FA and DI. Using simulations, we investigate the efficacy of selection for both increased and decreased FA for detecting genetic variation. We find that selection for increased FA has much more power to detect the presence of genetic variation than does selection for decreased FA. These results hold when realistic sample sizes are employed. Artificial selection for increased FA is currently the most powerful approach for the detection of genetic variation in DI.  相似文献   

12.
The concept of developmental instability (DI) is frequently used in evolutionary biology, and a range of definitions has been proposed. Moreover, numerous different statistical methods have been used for estimation of DI. The common basis for all methods is that measures need to be obtained from repeated structures within organisms. In the case of fluctuating asymmetry, mirror images could be interpreted as the repeats of each other. All repeats of a trait on one organism should, from a quantitative perspective, have the same genetic foundation. Most previous methods have not accounted for the genetics of the underlying trait. It is here shown how a statistical method from quantitative genetics (the repeated records animal model) can be used for assessment of DI, based on estimation of the variance due to the permanent environment. Moreover, Gibbs sampling is used for inference of the parameters, which provides a Bayesian framework where posterior distributions easily can be calculated from any functions of the variance components. The method is applied to a real dataset from two populations of the plant Scabiosa canescens, and results shows that it works well under realistic situations.  相似文献   

13.
The genetic basis of developmental instability (DI) remains largely unknown as a result of its morphological expression, fluctuating asymmetry (FA), poorly reflecting DI, especially if few traits are studied. The typically low values of heritability of FA (h2FA) can be translated into higher values of DI (h2DI) by the hypothetical repeatability, yet leading to wide confidence intervals. Thus, high sample sizes and/or several traits are indispensible for reaching meaningful conclusions. To obtain more insights into quantitative genetic variation of DI, we investigated between‐family variance in DI in six long bones of 1126 foetuses of the New Zealand white rabbit from a full‐sib experiment. We applied different approaches to obtain genetic parameters for DI. Heritabilities and the coefficients of between‐family variation (CVB) were calculated for six individual traits and composite indices. The results obtained, despite a likely upward bias as a result of maternal and non‐additive effects, lend support to the presence of moderate additive genetic variance for DI. It is suggested that, in foetal traits, the environmental variance was minimal, leading to a high likelihood of detecting genetic variation in DI, thus creating an ideal model system for studying the genetic basis of DI. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 33–42.  相似文献   

14.
Temporal variation in phenotypic selection is often attributed to environmental change causing movements of the adaptive surface relating traits to fitness, but this connection is rarely established empirically. Fluctuating phenotypic selection can be measured by the variance and autocorrelation of directional selection gradients through time. However, the dynamics of these gradients depend not only on environmental changes altering the fitness surface, but also on evolution of the phenotypic distribution. Therefore, it is unclear to what extent variability in selection gradients can inform us about the underlying drivers of their fluctuations. To investigate this question, we derive the temporal distribution of directional gradients under selection for a phenotypic optimum that is either constant or fluctuates randomly in various ways in a finite population. Our analytical results, combined with population‐ and individual‐based simulations, show that although some characteristic patterns can be distinguished, very different types of change in the optimum (including a constant optimum) can generate similar temporal distributions of selection gradients, making it difficult to infer the processes underlying apparent fluctuating selection. Analyzing changes in phenotype distributions together with changes in selection gradients should prove more useful for inferring the mechanisms underlying estimated fluctuating selection.  相似文献   

15.
16.
17.
In accordance with the consensus that sexual selection is responsible for the rapid evolution of display traits on macroevolutionary scales, microevolutionary studies suggest sexual selection is a widespread and often strong form of directional selection in nature. However, empirical evidence for the contemporary evolution of sexually selected traits via sexual rather than natural selection remains weak. In this study, we used a novel application of quantitative genetic breeding designs to test for a genetic response to sexual selection on eight chemical display traits from a field population of the fly, Drosophila serrata. Using our quantitative genetic approach, we were able to detect a genetically based difference in means between groups of males descended from fathers who had either successfully sired offspring or were randomly collected from the same wild population for one of these display traits, the diene (Z,Z)‐5,9‐C27 : 2. Our experimental results, in combination with previous laboratory studies on this system, suggest that both natural and sexual selection may be influencing the evolutionary trajectories of these traits in nature, limiting the capacity for a contemporary evolutionary response.  相似文献   

18.
The genetic basis of fluctuating asymmetry (FA), a measure of random deviations from perfect bilateral symmetry, has been the subject of much recent work. In this paper we compare two perspectives on the quantitative genetic analysis of FA and directional asymmetry (DA). We call these two approaches the character-state model and the environmental responsiveness model. In the former approach, the right and left sides are viewed as separate traits whose genetic coupling is manifested by the genetic correlation. This model leads to the relationship, h2(DA) = h2[(1-rA)/(1-rp)), where h2 is the heritability of each component trait (assumed to be the same), rA and rp are the genetic and phenotypic correlations between traits, respectively. Simulation shows that, under this model, the heritability of FA is considerably less than that of DA, except when heritabilities are very close to zero. The environmental responsiveness model permits genetic variance in FA even when the genetic correlation between traits is + 1. Simulation shows that under this model the heritability of FA can be uncoupled from that of DA. The additive and nonadditive components of the component (right and left) traits, their DA and FA values are estimated using a diallel cross of seven inbred lines of the sand cricket, Gryllus firmus. Four leg measurements were made and both the individual DA and FA values and the compound measures DASUM and CFA estimated. The heritabilities of the compound measures are slightly larger than the individual estimates. Dominance variance is observed in the individual traits but predicted to be an even smaller component of the phenotypic variance than the additive genetic variance. The estimated values confirm this, although a previous study has demonstrated that dominance variance is present. Because the heritabilities of FA are generally larger than those of DA, which never exceed 0.02, the environmental responsiveness model is more consistent with the data than the character-state model. A review of other data suggests that both sources of variation might be found in some species.  相似文献   

19.
Colour is an important factor in food detection and acquisition by animals using visually based foraging. Colour can be used to identify the suitability of a food source or improve the efficiency of food detection, and can even be linked to mate choice. Food colour preferences are known to exist, but whether these preferences are heritable and how these preferences evolve is unknown. Using the freshwater fish Poecilia reticulata, we artificially selected for chase behaviour towards two different-coloured moving stimuli: red and blue spots. A response to selection was only seen for chase behaviours towards the red, with realized heritabilities ranging from 0.25 to 0.30. Despite intense selection, no significant chase response was recorded for the blue-selected lines. This lack of response may be due to the motion-detection mechanism in the guppy visual system and may have novel implications for the evolvability of responses to colour-related signals. The behavioural response to several colours after five generations of selection suggests that the colour opponency system of the fish may regulate the response to selection.  相似文献   

20.
Infectious diseases have profound effects on life, both in nature and agriculture. However, a quantitative genetic theory of the host population for the endemic prevalence of infectious diseases is almost entirely lacking. While several studies have demonstrated the relevance of transmission of infections for heritable variation and response to selection, current quantitative genetics ignores transmission. Thus, we lack concepts of breeding value and heritable variation for endemic prevalence, and poorly understand response of endemic prevalence to selection. Here, we integrate quantitative genetics and epidemiology, and propose a quantitative genetic theory for the basic reproduction number R0 and for the endemic prevalence of an infection. We first identify the genetic factors that determine the prevalence. Subsequently, we investigate the population-level consequences of individual genetic variation, for both R0 and the endemic prevalence. Next, we present expressions for the breeding value and heritable variation, for endemic prevalence and individual binary disease status, and show that these depend strongly on the prevalence. Results show that heritable variation for endemic prevalence is substantially greater than currently believed, and increases strongly when prevalence decreases, while heritability of disease status approaches zero. As a consequence, response of the endemic prevalence to selection for lower disease status accelerates considerably when prevalence decreases, in contrast to classical predictions. Finally, we show that most heritable variation for the endemic prevalence is hidden in indirect genetic effects, suggesting a key role for kin-group selection in the evolutionary history of current populations and for genetic improvement in animals and plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号