首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
人视网膜在组织学上分为十层,色素上皮(RPE)和感光细胞(PRC,包括视锥细胞cone和视杆细胞rod)是位于视网膜最外面的两层细胞。视网膜色素变性(retinitispigmentosa,RP)是一组以进行性感光细胞及色素上皮功能丧失为共同表现的遗传性视网膜变性疾病,主要临床特征为夜盲、进行性视野损害、眼底色素沉着和视网膜电图(ERG)异常或无波。RP是遗传性视觉损害和失明的最常见原因之一,发病....  相似文献   

2.
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal degenerative diseases, characterized by the progressive death of rod and cone photoreceptors. A tremendous genetic heterogeneity is associated with the RP phenotype. Most mutations affect rods selectively and, through an unknown pathway, cause the rod cells to die by apoptosis. Cones, on the other hand, are seldom directly affected by the identified mutations, and yet, in many cases, they degenerate secondarily to rods, which accounts for loss of central vision and complete blindness. Many animal models of RP are available and have led to a better understanding of the disease and to the development of therapeutic strategies aimed at curing the specific genetic disorder (gene therapy), slowing down or even stopping the process of photoreceptor degeneration (growth factors or calcium blockers applications, vitamin supplementation), preserving the cones implicated in the central visual function (identification of endogenous cone viability factors) or even replacing the lost cells (transplantation, use of stem or precursor cells). Still, many obstacles will need to be overcome before most of these strategies can be applied to humans. In this review, we describe the different therapeutic strategies being studied worldwide and report the latest results in this field.  相似文献   

3.
Protein Aggregation in Retinal Cells and Approaches to Cell Protection   总被引:3,自引:0,他引:3  
1. Retinal dystrophies (RD) comprise a group of clinically and genetically heterogeneous retinal disorders, which typically result in the degeneration of photoreceptors followed by the impairment or loss of vision. Although age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are among the most common forms of RD, currently, there is no effective treatment for either disorder. 2. Recently, abnormal protein accumulation and aggregation due to protein misfolding and proteasome inhibition have been implicated in the pathogenesis of RD. In this paper we describe effects of several factors on protein aggregation and survival of photoreceptor cells. 3. Expression of rhodopsin carrying P23H mutation causes its accumulation in intracellular inclusion bodies in a perinuclear area of photoreceptor cells. beta- and gamma-synucleins and heat shock protein Hsp-70, but not alpha-synuclein, protect cultured ocular cells from mutant opsin accumulation. This effect might be explained by their chaperonic activity. 4. Knock-out of alpha- and gamma-synucleins does not affect gross retinal morphology, but induces tyrosine hydroxylase in the inner prexiform layer of the retina. Selegiline-a monoamine oxidase inhibitor used for the treatment of Parkinson's disease, reduces apoptosis and increases viability in cultured retinal pigment epithelium cells (APRE-19). 5. These results suggest that chaperones and selegiline may be considered promising candidates for the protection of ocular cells from the accumulation of misfolded and aggregated proteins.  相似文献   

4.
Retinitis pigmentosa (RP) is a group of inherited disorders affecting 1 in 3000-7000 people and characterized by abnormalities of the photoreceptors (rods and cones) or the retinal pigment epithelium of the retina which lead to progressive visual loss. RP can be inherited in an autosomal dominant, autosomal recessive or X-linked manner. While usually limited to the eye, RP may also occur as part of a syndrome as in the Usher syndrome and Bardet-Biedl syndrome. Over 40 genes have been associated with RP so far, with the majority of them expressed in either the photoreceptors or the retinal pigment epithelium. The tremendous heterogeneity of the disease makes the genetics of RP complicated, thus rendering genotype-phenotype correlations not fully applicable yet. In addition to the multiplicity of mutations, in fact, different mutations in the same gene may cause different diseases. We will here review which genes are involved in the genesis of RP and how mutations can lead to retinal degeneration. In the future, a more thorough analysis of genetic and clinical data together with a better understanding of the genotype-phenotype correlation might allow to reveal important information with respect to the likelihood of disease development and choices of therapy.  相似文献   

5.

Background

Recently, a transgenic rabbit with rhodopsin Pro 347 Leu mutation was generated as a model of retinitis pigmentosa (RP), which is characterized by a gradual loss of vision due to photoreceptor degeneration. The purpose of the current study is to noninvasively visualize and assess time-dependent changes in the retinal structures of a rabbit model of retinal degeneration by using speckle noise-reduced spectral-domain optical coherence tomography (SD-OCT).

Methodology/Principal Findings

Wild type (WT) and RP rabbits (aged 4–20 weeks) were investigated using SD-OCT. The total retinal thickness in RP rabbits decreased with age. The thickness of the outer nuclear layer (ONL) and between the external limiting membrane and Bruch''s membrane (ELM–BM) were reduced in RP rabbits around the visual streak, compared to WT rabbits even at 4 weeks of age, and the differences increased with age. However, inner nuclear layer (INL) thickness in RP rabbits did not differ from that of WT during the observation period. The ganglion cell complex (GCC) thickness in RP rabbits increased near the optic nerve head but not around the visual streak in the later stages of the observation period. Hyper-reflective change was widely observed in the inner segments (IS) and outer segments (OS) of the photoreceptors in the OCT images of RP rabbits. Ultrastructural findings in RP retinas included the appearance of small rhodopsin-containing vesicles scattered in the extracellular space around the photoreceptors.

Conclusions/Significance

In the current study, SD-OCT provided the pattern of photoreceptor degeneration in RP rabbits and the longitudinal changes in each retinal layer through the evaluation of identical areas over time. The time-dependent changes in the retinal structure of RP rabbits showed regional and time-stage variations. In vivo imaging of RP rabbit retinas by using SD-OCT is a powerful method for characterizing disease dynamics and for assessing the therapeutic effects of experimental interventions.  相似文献   

6.
Retinitis pigmentosa (RP), the group of hereditary conditions involving death of retinal photoreceptors, represents the most prevalent cause of visual handicap among working populations in developed countries. Here we provide an overview of the molecular pathologies associated with such disorders, from which it becomes clearly apparent that RP is one of the most genetically heterogeneous of hereditary conditions for which molecular pathologies have so far been elucidated. While heterogeneity of such magnitude would appear to represent a major impediment to the development of therapeutics, mutation-independent approaches to therapy are being developed to effectively by-pass such diversity in genetic aetiology. The implications of such technologies in terms of therapeutic intervention in RP, and indeed other genetically heterogeneous conditions, will be addressed.  相似文献   

7.
Xia X  Li Y  Huang D  Wang Z  Luo L  Song Y  Zhao L  Wen R 《PloS one》2011,6(3):e18282
Retinitis pigmentosa (RP) is a group of photoreceptor degenerative disorders that lead to loss of vision. Typically, rod photoreceptors degenerate first, resulting in loss of night and peripheral vision. Secondary cone degeneration eventually affects central vision, leading to total blindness. Previous studies have shown that photoreceptors could be protected from degeneration by exogenous neurotrophic factors, including ciliary neurotrophic factor (CNTF), a member of the IL-6 family of cytokines. Using a transgenic rat model of retinal degeneration (the S334-ter rat), we investigated the effects of Oncostatin M (OSM), another member of the IL-6 family of cytokines, on photoreceptor protection. We found that exogenous OSM protects both rod and cone photoreceptors. In addition, OSM promotes regeneration of cone outer segments in early stages of cone degeneration. Further investigation showed that OSM treatment induces STAT3 phosphorylation in Müller cells but not in photoreceptors, suggesting that OSM not directly acts on photoreceptors and that the protective effects of OSM on photoreceptors are mediated by Müller cells. These findings support the therapeutic strategy using members of IL-6 family of cytokines for retinal degenerative disorders. They also provide evidence that activation of the STAT3 pathway in Müller cells promotes photoreceptor survival. Our work highlights the importance of Müller cell-photoreceptor interaction in the retina, which may serve as a model of glia-neuron interaction in general.  相似文献   

8.
Retinitis pigmentosa (RP) is a group of inherited neurodegenerative diseases affecting photoreceptors and causing blindness in humans. Previously, excessive activation of enzymes belonging to the poly-ADP-ribose polymerase (PARP) group was shown to be involved in photoreceptor degeneration in the human homologous rd1 mouse model for RP. Since there are at least 16 different PARP isoforms, we investigated the exact relevance of the predominant isoform - PARP1 - for photoreceptor cell death using PARP1 knock-out (KO) mice. In vivo and ex vivo morphological analysis using optic coherence tomography (OCT) and conventional histology revealed no major alterations of retinal phenotype when compared to wild-type (wt). Likewise, retinal function as assessed by electroretinography (ERG) was normal in PARP1 KO animals. We then used retinal explant cultures derived from wt, rd1, and PARP1 KO animals to test their susceptibility to chemically induced photoreceptor degeneration. Since photoreceptor degeneration in the rd1 retina is triggered by a loss-of-function in phosphodiesterase-6 (PDE6), we used selective PDE6 inhibition to emulate the rd1 situation on non-rd1 genotypes. While wt retina subjected to PDE6 inhibition showed massive photoreceptor degeneration comparable to rd1 retina, in the PARP1 KO situation, cell death was robustly reduced. Together, these findings demonstrate that PARP1 activity is in principle dispensable for normal retinal function, but is of major importance for photoreceptor degeneration under pathological conditions. Moreover, our results suggest that PARP dependent cell death or PARthanatos may play a major role in retinal degeneration and highlight the possibility to use specific PARP inhibitors for the treatment of RP.  相似文献   

9.
Transgenic mice expressing a dominant mutation in the gene for the phototransduction molecule rhodopsin undergo retinal degeneration similar to that experienced by patients with the retinal degenerative disease, retinitis pigmentosa (RP). Although the mutation is thought to cause photoreceptor degeneration in a cell‐autonomous manner, the fact that rod photoreceptor degeneration is slowed in chimeric wild‐type/mutant mice suggests that cellular interactions are also important for maintaining photoreceptor survival. To more fully characterize the nature of the cellular interactions important for rod degeneration in the RP mutant mice, we have used an in vitro approach. We found that when the retinas of the transgenic mice were isolated from the pigmented epithelium and cultured as explants, the rod photoreceptors underwent selective degeneration with a similar time course to that observed in vivo. This selective rod degeneration also occurred when the cells were dissociated and cultured as monolayers. These data indicate that the mutant rod photoreceptors degenerate when removed from their normal cellular relationships and without contact with the pigmented epithelium, thus confirming the relative cell autonomy of the mutant phenotype. We next tested whether normal retinal cells could rescue the mutant photoreceptors in a coculture paradigm. Coculture of transgenic mouse with wild‐type mouse or rat retinal cells significantly enhanced transgenic rod photoreceptor survival; this survival‐promoting activity was diffusible through a filter, was heat labile, and not present in transgenic retinal cells. Several peptide growth factors known to be present in the retina were tested as the potential survival‐promoting molecule responsible for the effects of the conditioned medium; however, none of them promoted survival of the photoreceptors expressing the Pro23His mutant rhodopsin. Nevertheless, we were able to demonstrate that the mutant photoreceptors could be rescued by an antagonist to a retinoic acid receptor, suggesting that the endogeneous survival‐promoting activity may function through this pathway. These data thus confirm and extend the findings of previous work that local trophic interactions are important in regulating rod photoreceptor degeneration in retinitis pigmentosa. A diffusible factor found in normal but not transgenic retinal cells has a protective effect on the survival of rod photoreceptors from Pro23His mutant rhodopsin mice. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 475–490, 1999  相似文献   

10.

Background

Retinitis pigmentosa (RP) is characterized by progressive night blindness, visual field loss, altered vascular permeability and loss of central vision. Currently there is no effective treatment available except gene replacement therapy has shown promise in a few patients with specific gene defects. There is an urgent need to develop therapies that offer generic neuro-and vascular-protective effects with non-invasive intervention. Here we explored the potential of systemic administration of pluripotent bone marrow-derived mesenchymal stem cells (MSCs) to rescue vision and associated vascular pathology in the Royal College Surgeons (RCS) rat, a well-established animal model for RP.

Methodology/Principal Findings

Animals received syngeneic MSCs (1×106 cells) by tail vein at an age before major photoreceptor loss. Principal results: both rod and cone photoreceptors were preserved (5–6 cells thick) at the time when control animal has a single layer of photoreceptors remained; Visual function was significantly preserved compared with controls as determined by visual acuity and luminance threshold recording from the superior colliculus; The number of pathological vascular complexes (abnormal vessels associated with migrating pigment epithelium cells) and area of vascular leakage that would ordinarily develop were dramatically reduced; Semi-quantitative RT-PCR analysis indicated there was upregulation of growth factors and immunohistochemistry revealed that there was an increase in neurotrophic factors within eyes of animals that received MSCs.

Conclusions/Significance

These results underscore the potential application of MSCs in treating retinal degeneration. The advantages of this non-invasive cell-based therapy are: cells are easily isolated and can be expanded in large quantity for autologous graft; hypoimmunogenic nature as allogeneic donors; less controversial in nature than other stem cells; can be readministered with minor discomfort. Therefore, MSCs may prove to be the ideal cell source for auto-cell therapy for retinal degeneration and other ocular vascular diseases.  相似文献   

11.
Retinitis pigmentosa (RP) is an inherited retinal dystrophy that courses with progressive degeneration of retinal tissue and loss of vision. Currently, RP is an unpreventable, incurable condition. We propose glycogen synthase kinase 3 (GSK-3) inhibitors as potential leads for retinal cell neuroprotection, since the retina is also a part of the central nervous system and GSK-3 inhibitors are potent neuroprotectant agents. Using a chemical genetic approach, diverse small molecules with different potency and binding mode to GSK-3 have been used to validate and confirm GSK-3 as a pharmacological target for RP. Moreover, this medicinal chemistry approach has provided new leads for the future disease-modifying treatment of RP.  相似文献   

12.
Retinal degenerations are the major cause of incurable blindness characterized by loss of retinal photoreceptor cells. Several genes causing these genetic diseases have been identified, however the molecular characterization of a high percentage of patients affected by retinitis pigmentosa (RP), a common form of retinal degeneration, is still unknown. The high genetic heterogeneity of these diseases hampers the comprehension of the pathogenetic mechanism causing photoreceptor cell death. Therapies are not available yet and for this reason there is a lot of interest in understanding the etiology and the pathogenesis of these disorders at a cellular and molecular level. Some common features have been identified in different forms of RP. Apoptosis was reported to be the final outcome in all RP animal models and patients analyzed so far. We recently identified two apoptotic pathways co-activated in photoreceptors undergoing cell death in the retinal degeneration (rd1) mouse model of autosomal recessive RP. Our studies opened new perspectives together with many questions that require deeper analyses in order to take advantage of this knowledge and develop new therapeutic approaches. We believe that minimizing cell demise may represent a promising curing strategy that needs to be exploited for retinal degeneration.  相似文献   

13.
BACKGROUND: We have developed minimal non-primate lentiviral vectors based on the equine infectious anaemia virus (EIAV). We evaluated the in vivo expression profiles of these vectors delivered regionally to ocular tissues to define their potential utility in ocular gene therapy. METHODS: EIAV vectors pseudotyped with VSV-G or rabies-G envelope proteins were delivered subretinally, intravitreally or into the anterior chambers (intracameral administration) in mice. Reporter gene (eGFP) expression was analysed using in vivo retinal imaging or histological examination of eyes and brains at intervals between 3 days and 16 months. We investigated the effects of vector titre, pseudotype, genome configuration, site of intraocular administration, intentional retinal trauma and the degree of retinal maturation on the spatial and temporal expression profiles of these vectors. RESULTS: Subretinal vector delivery resulted in efficient and stable transduction of retinal pigment epithelial (RPE) cells and variable transduction of photoreceptors up to 16 months post-injection. Retinal trauma facilitated the local transduction of neurosensory retinal cells. Intracameral administration of VSV-G- but not rabies-G-pseudotyped vectors produced stable eGFP expression in corneal endothelial cells and trabecular meshwork. CONCLUSIONS: The cellular tropism and expression kinetics of optimised EIAV vectors after intraocular administration make them attractive vehicles for delivering therapeutic genes in the management of inherited and acquired retinal and anterior segment disorders.  相似文献   

14.
15.
The rapid and massive degeneration of photoreceptors in retinal degeneration might have a dramatic negative effect on retinal circuits downstream of photoreceptors. However, the impact of photoreceptor loss on the morphology and function of retinal ganglion cells (RGCs) is not fully understood, precluding the rational design of therapeutic interventions that can reverse the progressive loss of retinal function. The present study investigated the morphological changes in several identified RGCs in the retinal degeneration rd1 mouse model of retinitis pigmentosa (RP), using a combination of viral transfection, microinjection of neurobiotin and confocal microscopy. Individual RGCs were visualized with a high degree of detail using an adeno-associated virus (AAV) vector carrying the gene for enhanced green fluorescent protein (EGFP), allowed for large-scale surveys of the morphology of RGCs over a wide age range. Interestingly, we found that the RGCs of nine different types we encountered were especially resistant to photoreceptor degeneration, and retained their fine dendritic geometry well beyond the complete death of photoreceptors. In addition, the RGC-specific markers revealed a remarkable degree of stability in both morphology and numbers of two identified types of RGCs for up to 18 months of age. Collectively, our data suggest that ganglion cells, the only output cells of the retina, are well preserved morphologically, indicating the ganglion cell population might be an attractive target for treating vision loss.  相似文献   

16.
Inherited retinal dystrophies, such as retinitis pigmentosa (RP), include a group of relatively rare hereditary diseases caused by mutations in genes that code for proteins involved in the maintenance and function of the photoreceptor cells (cones and rods). The different forms of RP consist of progressive neurodegenerative disorders which are generally related to various and severe limitations of visual performances. In the course of typical RP (rod-cone dystrophy), the affected individuals first experience night-blindness and/or visual field constriction (secondary to rod dysfunctions), followed by variable alterations of the central vision (due to cone damages). On the other hand, during the atypical form of RP (cone-rod dystrophy), the cone's functionalities are prevalently disrupted in comparison with the rod's ones. The basic diagnosis of RP relies upon the documentation of unremitting loss in photoreceptor activity by electroretinogram and/or visual field testing. The prevalence of all RP typologies is variably reported in about one case for each 3000-5000 individuals, with a total of about two millions of affected persons worldwide. The inherited retinal dystrophies are sometimes the epiphenomenon of a complex framework (syndromic RP), but more often they represent an isolated disorder (about 85-90 % of cases). Although 200 causative RP mutations have been hitherto detected in more than 100 different genes, the molecular defect is identifiable in just about the 50% of the analyzed patients with RP. Not only the RP genotypes are very heterogeneous, but also the patients with the same mutation can be affected by different phenotypic manifestations. RP can be inherited as autosomal dominant, autosomal recessive or X-linked trait, and many sporadic forms are diagnosed in patients with no affected relatives. Dissecting the clinico-genetic complexity of RP has become an attainable objective by means of large-scale research projects, in which the collaboration between ophthalmologists, geneticists, and epidemiologists becomes a crucial aspect. In the present review, the main issues regarding clinical phenotyping and epidemiologic criticisms of RP are focused, especially highlighting the importance of both standardization of the diagnostic protocols and appropriateness of the disease's registration systems.  相似文献   

17.
Various advances have been made in the treatment of retinal diseases, including new treatment strategies and innovations in surgical devices. However, the treatment of degenerative retinal diseases, such as retinitis pigmentosa (RP) and age‐related macular degeneration (AMD), continues to pose a significant challenge. In this review, we focus on the use of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to treat retinal diseases by harnessing the ability of stem cells to differentiate into different body tissues. The retina is a tissue specialized for light sensing, and its degradation leads to vision loss. As part of the central nervous system, the retina has very low regenerative capability, and therefore, treatment options are limited once it degenerates. Nevertheless, innovations in methods to induce the generation of retinal cells and tissues from ESCs/iPSCs enable the development of novel approaches for these irreversible diseases. Here we review some historical background and current clinical trials involving the use of stem‐cell‐derived retinal pigment epithelial cells for AMD treatment and stem cell‐derived retinal cells/tissues for RP therapy. Finally, we discuss our future vision of regenerative treatment for retinal diseases with a partial focus on our studies and introduce other interesting approaches for restoring vision.  相似文献   

18.
Human retinal pigment epithelium (HRPE) cells are important in maintaining the normal physiology within the neurosensory retina and photoreceptors. Recently, transplantation of HRPE has become a possible therapeutic approach for retinal degeneration. By negative immunoselection (CD45 and glycophorin A), in this study, we have isolated and cultivated adult human bone marrow stem cells (BMSCs) with multilineage differentiation potential. After a 2- to 4-week culture under chondrogenic, osteogenic, adipogenic, and hepatogenic induction medium, these BMSCs were found to differentiate into cartilage, bone, adipocyte, and hepatocyte-like cells, respectively. We also showed that these BMSCs could differentiate into neural precursor cells (nestin-positive) and mature neurons (MAP-2 and Tuj1-positive) following treatment of neural selection and induction medium for 1 month. Furthermore, the plasticity of BMSCs was confirmed by initiating their differentiation into retinal cells and photoreceptor lineages by co-culturing with HRPE cells. The latter system provides an ex vivo expansion model of culturing photoreceptors for the treatment of retinal degeneration diseases.  相似文献   

19.
Retinal neuroprotection by growth factors: a mechanistic perspective   总被引:7,自引:0,他引:7  
For more than a decade it has been known that certain growth factors inhibit apoptosis in genetically determined and experimental models of inner and outer retinal degeneration. The molecular mechanisms underlying these protective effects and the signaling that supports the survival of photoreceptors and retinal ganglion cells in these models have recently come under more in depth investigation. This paper reviews our current understanding of the balance of pro- and antiapoptotic signals that determine cell fate in the retina and how the activation of key signal transduction pathways by specific classes of neurotrophins protects retinal neurons.  相似文献   

20.
Diabetic retinopathy (DR) is one of the most severe clinical manifestations of diabetes mellitus and a major cause of blindness. DR is principally a microvascular disease, although the pathogenesis also involves metabolic reactive intermediates which induce neuronal and glial activation resulting in disruption of the neurovascular unit and regulation of the microvasculature. However, the impact of neural/glial activation in DR remains controversial, notwithstanding our understanding as to when neural/glial activation occurs in the course of disease. The objective of this study was to determine a potential protective role of neuropeptide Y (NPY) using an established model of DR permissive to N-methyl-D-aspartate (NMDA)-induced excitotoxic apoptosis of retinal ganglion cells (RGC) and vascular endothelial growth factor (VEGF)-induced vascular leakage. In vitro evaluation using primary retinal endothelial cells demonstrates that NPY promotes vascular integrity, demonstrated by maintained tight junction protein expression and reduced permeability in response to VEGF treatment. Furthermore, ex vivo assessment of retinal tissue explants shows that NPY can protect RGC from excitotoxic-induced apoptosis. In vivo clinical imaging and ex vivo tissue analysis in the diabetic model permitted assessment of NPY treatment in relation to neural and endothelial changes. The neuroprotective effects of NPY were confirmed by attenuating NMDA-induced retinal neural apoptosis and able to maintain inner retinal vascular integrity. These findings could have important clinical implications and offer novel therapeutic approaches for the treatment in the early stages of DR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号