首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in the crumbs homologue 1 (CRB1) gene cause a specific form of retinitis pigmentosa (RP) that is designated "RP12" and is characterized by a preserved para-arteriolar retinal pigment epithelium (PPRPE) and by severe loss of vision at age <20 years. Because of the early onset of disease in patients who have RP with PPRPE, we considered CRB1 to be a good candidate gene for Leber congenital amaurosis (LCA). Mutations were detected in 7 (13%) of 52 patients with LCA from the Netherlands, Germany, and the United States. In addition, CRB1 mutations were detected in five of nine patients who had RP with Coats-like exudative vasculopathy, a relatively rare complication of RP that may progress to partial or total retinal detachment. Given that four of five patients had developed the complication in one eye and that not all siblings with RP have the complication, CRB1 mutations should be considered an important risk factor for the Coats-like reaction, although its development may require additional genetic or environmental factors. Although no clear-cut genotype-phenotype correlation could be established, patients with LCA, which is the most severe retinal dystrophy, carry null alleles more frequently than do patients with RP. Our findings suggest that CRB1 mutations are a frequent cause of LCA and are strongly associated with the development of Coats-like exudative vasculopathy in patients with RP.  相似文献   

2.
Inherited retinal dystrophies, such as retinitis pigmentosa (RP), include a group of relatively rare hereditary diseases caused by mutations in genes that code for proteins involved in the maintenance and function of the photoreceptor cells (cones and rods). The different forms of RP consist of progressive neurodegenerative disorders which are generally related to various and severe limitations of visual performances. In the course of typical RP (rod-cone dystrophy), the affected individuals first experience night-blindness and/or visual field constriction (secondary to rod dysfunctions), followed by variable alterations of the central vision (due to cone damages). On the other hand, during the atypical form of RP (cone-rod dystrophy), the cone's functionalities are prevalently disrupted in comparison with the rod's ones. The basic diagnosis of RP relies upon the documentation of unremitting loss in photoreceptor activity by electroretinogram and/or visual field testing. The prevalence of all RP typologies is variably reported in about one case for each 3000-5000 individuals, with a total of about two millions of affected persons worldwide. The inherited retinal dystrophies are sometimes the epiphenomenon of a complex framework (syndromic RP), but more often they represent an isolated disorder (about 85-90 % of cases). Although 200 causative RP mutations have been hitherto detected in more than 100 different genes, the molecular defect is identifiable in just about the 50% of the analyzed patients with RP. Not only the RP genotypes are very heterogeneous, but also the patients with the same mutation can be affected by different phenotypic manifestations. RP can be inherited as autosomal dominant, autosomal recessive or X-linked trait, and many sporadic forms are diagnosed in patients with no affected relatives. Dissecting the clinico-genetic complexity of RP has become an attainable objective by means of large-scale research projects, in which the collaboration between ophthalmologists, geneticists, and epidemiologists becomes a crucial aspect. In the present review, the main issues regarding clinical phenotyping and epidemiologic criticisms of RP are focused, especially highlighting the importance of both standardization of the diagnostic protocols and appropriateness of the disease's registration systems.  相似文献   

3.
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal degenerative diseases, characterized by the progressive death of rod and cone photoreceptors. A tremendous genetic heterogeneity is associated with the RP phenotype. Most mutations affect rods selectively and, through an unknown pathway, cause the rod cells to die by apoptosis. Cones, on the other hand, are seldom directly affected by the identified mutations, and yet, in many cases, they degenerate secondarily to rods, which accounts for loss of central vision and complete blindness. Many animal models of RP are available and have led to a better understanding of the disease and to the development of therapeutic strategies aimed at curing the specific genetic disorder (gene therapy), slowing down or even stopping the process of photoreceptor degeneration (growth factors or calcium blockers applications, vitamin supplementation), preserving the cones implicated in the central visual function (identification of endogenous cone viability factors) or even replacing the lost cells (transplantation, use of stem or precursor cells). Still, many obstacles will need to be overcome before most of these strategies can be applied to humans. In this review, we describe the different therapeutic strategies being studied worldwide and report the latest results in this field.  相似文献   

4.
The limb-girdle muscular dystrophies are a group of disorders where our understanding of their underlying molecular basis has made huge strides over the past years, revealing great heterogeneity at the clinical and molecular level. The availability of direct protein and/ or gene based approaches to diagnosis means that these disorders can now be precisely defined, and such definition of a precise diagnosis is increasingly allowing directed management for these diseases by the ability to predict specific complications such as those of the cardiac or respiratory systems. An algorithm combining clinical, biochemical and molecular testing is described which will aid precision of diagnosis and direct specific testing towards the cases most likely to benefit. This brings advantages for the patients of today in recognising the specific risks of their disorders, and in the future will be the starting point for specific gene and protein based therapies.  相似文献   

5.
The limb-girdle muscular dystrophies are a group of disorders where our understanding of their underlying molecular basis has made huge strides over the past years, revealing great heterogeneity at the clinical and molecular level. The availability of direct protein and/ or gene based approaches to diagnosis means that these disorders can now be precisely defined, and such definition of a precise diagnosis is increasingly allowing directed management for these diseases by the ability to predict specific complications such as those of the cardiac or respiratory systems. An algorithm combining clinical, biochemical and molecular testing is described which will aid precision of diagnosis and direct specific testing towards the cases most likely to benefit. This brings advantages for the patients of today in recognising the specific risks of their disorders, and in the future will be the starting point for specific gene and protein based therapies.  相似文献   

6.
基因组织特异性相关研究进展   总被引:1,自引:0,他引:1  
研究基因的组织特异性是了解生命活动进程和组织功能的重要一步.尽管对于看家基因和组织特异基因的研究由来已久,但是对于它们仍缺少统一的定义方式和检测方法.在定义方式上,可以从基因的组织表达数和在各组织间的表达变化情况来分别定义看家基因和组织特异基因.通常将在大多数正常组织中有表达,且表达水平较稳定的基因称为看家基因,而将在一个或少数组织中优势表达的基因定义为组织特异基因或组织选择基因.在检测方法上,高通量实验技术,包括基因芯片、RNA-seq和质谱技术等已成为检测基因组织特异性的主要方法.通过比较多个典型研究的实验结果,发现不同检测方法的覆盖度和灵敏度存在很大差异,其中RNA-seq技术最为灵敏,获得的看家基因数目最多,质谱技术检测出来的看家基因和组织特异基因数目较少,而基因芯片方法给出的多个检测结果间差别较大.尽管不同的定义方式和检测方法所导致的看家基因(或组织特异基因)的集合不完全一致,但不同的看家基因数据集(或组织特异基因)却展现出非常一致的功能和特性.看家基因通常实现所有组织和细胞都必须的基本功能,而看家基因与其他组织表达基因间的相互作用以及组织特异基因间的相互作用则实现了组织的特有功能.同时,基因的组织特异性与疾病之间具有密切联系,相比其他基因,看家基因更有可能成为癌基因,而组织特异基因则更有希望发展成为药物靶标.  相似文献   

7.
Retinitis pigmentosa (RP) is a group of retinal degenerative diseases that are characterised primarily by the loss of rod photoreceptor cells. Mutations in rhodopsin are the most common cause of autosomal-dominant RP (ADRP). Here, we propose a new classification for rhodopsin mutations based on their biochemical and cellular properties. Several different potential gain-of-function mechanisms for rhodopsin ADRP are described and discussed. Possible dominant-negative mechanisms, which affect the processing, translocation or degradation of wild-type rhodopsin, are also considered. Understanding the molecular and cellular consequences of rod-opsin mutations and the underlying disease mechanisms in ADRP are essential to develop future therapies for this class of retinal dystrophies.  相似文献   

8.
Retinitis pigmentosa (RP) is a group of inherited diseases that cause blindness due to the progressive death of rod and cone photoreceptors in the retina. There are currently no effective treatments for RP. Inherited mutations in rhodopsin, the light-sensing protein of rod photoreceptor cells, are the most common cause of autosomal-dominant RP. The majority of mutations in rhodopsin, including the common P23H substitution, lead to protein misfolding, which is a feature in many neurodegenerative disorders. Previous studies have shown that upregulating molecular chaperone expression can delay disease progression in models of neurodegeneration. Here, we have explored the potential of the heat-shock protein co-inducer arimoclomol to ameliorate rhodopsin RP. In a cell model of P23H rod opsin RP, arimoclomol reduced P23H rod opsin aggregation and improved viability of mutant rhodopsin-expressing cells. In P23H rhodopsin transgenic rat models, pharmacological potentiation of the stress response with arimoclomol improved electroretinogram responses and prolonged photoreceptor survival, as assessed by measuring outer nuclear layer thickness in the retina. Furthermore, treated animal retinae showed improved photoreceptor outer segment structure and reduced rhodopsin aggregation compared with vehicle-treated controls. The heat-shock response (HSR) was activated in P23H retinae, and this was enhanced with arimoclomol treatment. Furthermore, the unfolded protein response (UPR), which is induced in P23H transgenic rats, was also enhanced in the retinae of arimoclomol-treated animals, suggesting that arimoclomol can potentiate the UPR as well as the HSR. These data suggest that pharmacological enhancement of cellular stress responses may be a potential treatment for rhodopsin RP and that arimoclomol could benefit diseases where ER stress is a factor.  相似文献   

9.
In the last two years, neurofilaments (NFs) have become one of the most blazing topics in clinical neuroscience. NFs are major cytoskeletal constituents of neurons, can be detected in body fluids, and have recently emerged as universal biomarkers of neuronal injury and neurological diseases. This review will examine the evolving landscape of NFs, from their specific cellular functions within neurons to their broad clinical value as biomarkers. Particular attention will be given to the dynamic nature of the NF network and its novel roles in microtubule regulation, neurotransmission, and nanomedicine. Building from the initial evidence of causative mutations in NF genes in Charcot–Marie–Tooth diseases, the latest advances at the frontiers of basic and clinical sciences have expanded the scope and relevance of NFs for human health remarkably and have poised to fuel innovation in cell biology and neuroscience.  相似文献   

10.
Recently it has become possible to investigate expression of all human genes with microarray technique. The authors provide arguments to consider peripheral white blood cells and in particular lymphocytes as a model for the investigation of pathophysiology of asthma, RA, and SLE diseases in which inflammation is a major component. Lymphocytes are an alternative to tissue biopsies that are most often difficult to collect systematically. Lymphocytes express more than 75% of the human genome, and, being an important part of the immune system, they play a central role in the pathogenesis of asthma, RA, and SLE. Here we review alterations of gene expression in lymphocytes and methodological aspects of the microarray technique in these diseases. Lymphocytic genes may become activated because of a general nonspecific versus disease-specific mechanism. The authors suppose that in these diseases microarray profiles of gene expression in lymphocytes can be disease specific, rather than inflammation specific. Some potentials and pitfalls of the array technologies are discussed. Optimal clinical designs aimed to identify disease-specific genes are proposed. Lymphocytes can be explored for research, diagnostic, and possible treatment purposes in these diseases, but their precise value should be clarified in future investigation.  相似文献   

11.
Retinitis pigmentosa (RP) is a group of inherited disorders affecting 1 in 3000-7000 people and characterized by abnormalities of the photoreceptors (rods and cones) or the retinal pigment epithelium of the retina which lead to progressive visual loss. RP can be inherited in an autosomal dominant, autosomal recessive or X-linked manner. While usually limited to the eye, RP may also occur as part of a syndrome as in the Usher syndrome and Bardet-Biedl syndrome. Over 40 genes have been associated with RP so far, with the majority of them expressed in either the photoreceptors or the retinal pigment epithelium. The tremendous heterogeneity of the disease makes the genetics of RP complicated, thus rendering genotype-phenotype correlations not fully applicable yet. In addition to the multiplicity of mutations, in fact, different mutations in the same gene may cause different diseases. We will here review which genes are involved in the genesis of RP and how mutations can lead to retinal degeneration. In the future, a more thorough analysis of genetic and clinical data together with a better understanding of the genotype-phenotype correlation might allow to reveal important information with respect to the likelihood of disease development and choices of therapy.  相似文献   

12.
Fungi are not classified as plants or animals. They resemble plants in many ways but do not produce chlorophyll or make their own food photosynthetically like plants. Fungi are useful for the production of beer, bread, medicine, etc. More complex than viruses or bacteria; fungi can be destructive human pathogens responsible for various diseases in humans. Most people have a strong natural immunity against fungal infection. However, fungi can cause diseases when this immunity breaks down. In the last few years, fungal infection has increased strikingly and has been accompanied by a rise in the number of deaths of cancer patients, transplant recipients, and acquired immunodeficiency syndrome (AIDS) patients owing to fungal infections. The growth rate of fungi is very slow and quite difficult to identify. A series of molecules with antifungal activity against different strains of fungi have been found in insects, which can be of great importance to tackle human diseases. Insects secrete such compounds, which can be peptides, as a part of their immune defense reactions. Active antifungal peptides developed by insects to rapidly eliminate infectious pathogens are considered a component of the defense munitions. This review focuses on naturally occurring antifungal peptides from insects and their challenges to be used as armaments against human diseases.  相似文献   

13.
Khan SH  Ahmad N  Ahmad F  Kumar R 《IUBMB life》2010,62(12):891-895
Osmolytes are naturally occurring organic compounds, which represent different chemical classes including amino acids, methylamines, and polyols. By accumulating high concentrations of osmolytes, organisms adapt to perturbations that can cause structural changes in their cellular proteins. Osmolytes shift equilibrium toward natively-folded conformations by raising the free energy of the unfolded state. As osmolytes predominantly affect the protein backbone, the balance between osmolyte-backbone interactions and amino acid side chain-solvent interactions determines protein folding. Abnormal cell volume regulation significantly contributes to the pathophysiology of several disorders, and cells respond to these changes by importing, exporting, or synthesizing osmolytes to maintain volume homeostasis. In recent years, it has become quite evident that cells regulate many biological processes such as protein folding, protein disaggregation, and protein-protein interactions via accumulation of specific osmolytes. Many genetic diseases are attributed to the problems associated with protein misfolding/aggregation, and it has been shown that certain osmolytes can protect these proteins from misfolding. Thus, osmolytes can be utilized as therapeutic targets for such diseases. In this review article, we discuss the role of naturally occurring osmolytes in protein stability, underlying mechanisms, and their potential use as therapeutic molecules.  相似文献   

14.
The application of gold in medicine is traceable for several thousand years and Au(i) compounds have been used clinically to treat rheumatoid arthritis since the last century. Recently research into gold-based drugs for a range of human diseases has seen a renaissance. Old as well as new Au(i) and Au(iii) compounds have been used and designed with an aim of targeting cellular components that are implicated in the onset or progression of cancers, rheumatoid arthiritis, viral and parasitic diseases. In addition, new disease targets have been found for gold compounds that have given insight into the mechanism of action of these compounds, as well as in the molecular pathophysiology of human diseases. Here we discuss the rationale for the design and use of gold compounds that have specific and selective targets in cells to alleviate the symptoms of a range of human diseases. We summarise the most recent findings in this research and our own discoveries to show that gold compounds can be developed to become versatile and powerful drugs for diseases caused by dysfunction of selenol and thiol containing proteins.  相似文献   

15.
B-cell precursor acute lymphoblastic leukemias (pB-ALLs) are the most frequent type of malignancies of the childhood, and also affect an important proportion of adult patients. In spite of their apparent homogeneity, pB-ALL comprises a group of diseases very different both clinically and pathologically, and with very diverse outcomes as a consequence of their biology, and underlying molecular alterations. Their understanding (as a prerequisite for their cure) will require a sustained multidisciplinary effort from professionals coming from many different fields. Among all the available tools for pB-ALL research, the use of animal models stands, as of today, as the most powerful approach, not only for the understanding of the origin and evolution of the disease, but also for the development of new therapies. In this review we go over the most relevant (historically, technically or biologically) genetically engineered mouse models (GEMMs) of human pB-ALLs that have been generated over the last 20 years. Our final aim is to outline the most relevant guidelines that should be followed to generate an “ideal” animal model that could become a standard for the study of human pB-ALL leukemia, and which could be shared among research groups and drug development companies in order to unify criteria for studies like drug testing, analysis of the influence of environmental risk factors, or studying the role of both low-penetrance mutations and cancer susceptibility alterations.  相似文献   

16.
Myelodysplastic Syndromes (MDS) are a heterogeneous group of acquired clonal bone marrow disorders, characterised by ineffective haematopoiesis. The mechanisms underlying many of these blood disorders have remained elusive due to the difficulty in pinpointing specific gene mutations or haploinsufficencies, which can occur within large deleted regions. However, there is an increasing interest in the classification of some of these diseases as ribosomopathies. Indeed, studies have implicated Ribosomal Protein (RP) S14 as a strong candidate for haploinsufficiency in 5q- syndrome, a particular form of MDS. Recently, two novel mouse models have provided evidence for the involvement of both RPS14 and the p53 pathway, and specific miRNAs in 5q- syndrome. In this review we will discuss: 5q- syndrome mouse models, the possible mechanisms underlying this blood disorder with respect to the candidate genes, and comparisons with other ribosomopathies, and the involvement of the p53 pathway in these diseases.  相似文献   

17.
Retinitis pigmentosa (RP) is the most common inherited human eye disease resulting in night blindness and visual defects. It is well known that the disease is caused by rod photoreceptor degeneration; however, it remains incurable, due to the unavailability of disease-specific human photoreceptor cells for use in mechanistic studies and drug screening. We obtained fibroblast cells from five RP patients with distinct mutations in the RP1, RP9, PRPH2 or RHO gene, and generated patient-specific induced pluripotent stem (iPS) cells by ectopic expression of four key reprogramming factors. We differentiated the iPS cells into rod photoreceptor cells, which had been lost in the patients, and found that they exhibited suitable immunocytochemical features and electrophysiological properties. Interestingly, the number of the patient-derived rod cells with distinct mutations decreased in vitro; cells derived from patients with a specific mutation expressed markers for oxidation or endoplasmic reticulum stress, and exhibited different responses to vitamin E than had been observed in clinical trials. Overall, patient-derived rod cells recapitulated the disease phenotype and expressed markers of cellular stresses. Our results demonstrate that the use of patient-derived iPS cells will help to elucidate the pathogenic mechanisms caused by genetic mutations in RP.  相似文献   

18.
For 30 years there has been experimental work aimed at transplanting islets for the treatment of diabetes with a view to curing the disease and preventing the secondary complications. Many technical difficulties were experienced, first in isolating the islets without damaging them, and second in finding a suitable place to inject them, but until recently the results of a vascularized pancreas transplant have been superior to islet transplantation. In 2000, the group in Edmonton, headed by Shapiro, published encouraging results using a different immunosuppression in transplanting patients earlier in the course of their disease than had been attempted previously. The results were excellent at a year and good at 2 years in patients with Type I diabetes, however there was the rather worrying attrition at five years. Nevertheless, the Edmonton observations were proof of concept and have intensified interest in treating diabetes and other diseases where a specific protein synthesis was required by cell transplantation and/or genetic engineering. The recent interest in embryonic stem cells extenuated these efforts and progress is being made in defining the difficulties, which are greater than most workers would have predicted.In this review, the subject is discussed explaining where progress needs to be made in order to provide treatment that would be of value to patients.  相似文献   

19.
20.
Parasitic worms survive within their immunocompetent hosts by modulating their immune system and by inhibiting inflammatory responses directed against the parasites. This immunomodulation has a spill over effect and also inhibits inflammatory responses originating from other causes. For this reason, persons who are infected with certain species of worms show a lower rate of allergic diseases as compared to persons who are free of parasites. In the same line, studies in mouse models revealed that many inflammatory diseases can be treated by worm infections. This effect is among others owing to specific proteins that are released by the worms. Such secreted immunomodulators, shaped by co‐evolution between parasites and their hosts, could become lead compounds for the development of new therapies against allergic and inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号