首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
An accurate solvation model is essential for computer modeling of protein folding and other biomolecular self-assembly processes. Compared to explicit solvent models, implicit solvent models, such as the Poisson-Boltzmann (PB) with solvent accessible surface area model (PB/SA), offer a much faster speed—the most compelling reason for the popularity of these implicit solvent models. Since these implicit solvent models typically use empirical parameters, such as atomic radii and the surface tensions, an optimal fit of these parameters is crucial for the final accuracy of properties such as solvation free energy and folding free energy. In this paper, we proposed a combined approach, namely SD/GA, which takes the advantage of both local optimization with the steepest descent (SD), and global optimization with the genetic algorithm (GA), for parameters optimization in multi-dimensional space. The SD/GA method is then applied to the optimization of solvation parameters in the non-polar cavity term of the PB/SA model. The results show that the newly optimized parameters from SD/GA not only increase the accuracy in the solvation free energies for ~200 organic molecules, but also significantly improve the free energy landscape of a β-hairpin folding. The current SD/GA method can be readily applied to other multi-dimensional parameter space optimization as well.  相似文献   

5.
6.
We explore the use of classical Linear Response Theory (LRT) as an alternative strategy to the use of Molecular Mechanics/Poisson-Boltzmann strategies to compute the solvation free energy of macromolecules from molecular dynamics simulations using an explicit representation of solvent. The method reproduces well the free energy of solvation of standard amino acid side chains, small peptides, and proteins. The use of a fully discrete representation of solvent avoids the possible problems of continuum models to represent the solvation of systems containing tightly bound water molecules.  相似文献   

7.
Continuum solvation models that estimate free energies of solvation as a function of solvent accessible surface area are computationally simple enough to be useful for predicting protein conformation. The behavior of three such solvation models has been examined by applying them to the minimization of the conformational energy of bovine pancreatic trypsin inhibitor. The models differ only with regard to how the constants of proportionality between free energy and surface area were derived. Each model was derived by fitting to experimentally measured equilibrium solution properties. For two models, the solution property was free energy of hydration. For the third, the property was NMR coupling constants. The purpose of this study is to determine the effect of applying these solvation models to the nonequilibrium conformations of a protein arising in the course of global searches for conformational energy minima. Two approaches were used: (1) local energy minimization of an ensemble of conformations similar to the equilibrium conformation and (2) global search trajectories using Monte Carlo plus minimization starting from a single conformation similar to the equilibrium conformation. For the two models derived from free energy measurements, it was found that both the global searches and local minimizations yielded conformations more similar to the X-ray crystallographic structures than did searches or local minimizations carried out in the absence of a solvation component of the conformational energy. The model derived from NMR coupling constants behaved similarly to the other models in the context of a global search trajectory. For one of the models derived from measured free energies of hydration, it was found that minimization of an ensemble of near-equilibrium conformations yielded a new ensemble in which the conformation most similar to the X-ray determined structure PTI4 had the lowest total free energy. Despite the simplicity of the continuum solvation models, the final conformation generated in the trajectories for each of the models exhibited some of the characteristics that have been reported for conformations obtained from molecular dynamics simulations in the presence of a bath of explicit water molecules. They have smaller root mean square (rms) deviations from the experimentally determined conformation, fewer incorrect hydrogen bonds, and slightly larger radii of gyration than do conformations derived from search trajectories carried out in the absence of solvent.  相似文献   

8.
Several hydration models for peptides and proteins based on solvent accessible surface area have been proposed previously. We have evaluated some of these models as well as four new ones in the context of near-native conformations of a protein. In addition, we propose an empirical site-site distance-dependent correction that can be used in conjunction with any of these models. The set of near-native structures consisted of 39 conformations of bovine pancreatic trypsin inhibitor (BPTI) each of which was a local minimum of an empirical energy function (ECEPP) in the absence of solvent. Root-mean-square (rms) deviations from the crystallographically determined structure were in the following ranges: 1.06-1.94 A for all heavy atoms, 0.77-1.36 A for all backbone heavy atoms, 0.68-1.33 A for all alpha-carbon atoms, and 1.41-2.72 A for all side-chain heavy atoms. We have found that there is considerable variation among the solvent models when evaluated in terms of concordance between the solvation free energy and the rms deviations from the crystallographically determined conformation. The solvation model for which the best concordance (0.939) with the rms deviations of the C alpha atoms was found was derived from NMR coupling constants of peptides in water combined with an exponential site-site distance dependence of the potential of mean force. Our results indicate that solvation free energy parameters derived from nonpeptide free energies of hydration may not be transferrable to peptides. Parameters derived from peptide and protein data may be more applicable to conformational analysis of proteins. A general approach to derive parameters for free energy of hydration from ensemble-averaged properties of peptides in solution is described.  相似文献   

9.
The importance of including different energy contributions in calculations of electrostatic energies in proteins is examined by calculating the intrinsic pKa values of the acidic groups of bovine pancreatic trypsin inhibitor. It appears that such calculations provide a powerful and revealing test; the relevant solvation energies of the ionized acids are of the order of -70 kcal/mol (1 cal = 4.184 J), and microscopic calculations that do not attempt to simulate the complete protein dielectric effect (including the surrounding solvent) can underestimate the solvation energy by as much as 50 kcal/mol. Reproducing correctly, by the same set of parameters, the solvation energies of ionized acids in different sites of a protein cannot be accomplished by including only part of the key energy contributions. The problems associated with macroscopic calculations are also considered and illustrated by the specific case of bovine pancreatic trypsin inhibitor. A promising approach is shown to be provided by a refinement of the previously developed Protein Dipoles Langevin Dipoles model. This model seems to represent consistently the microscopic dielectric of the protein and the surrounding water molecules. The model overcomes the problems associated with the macroscopic models (by treating explicitly the solvent molecules) and avoids the convergence problems associated with all-atom solvent models (by treating the average solvent polarization rather than averaging the actual polarization energy). This paper describes in detail the actual implementation of the model and examines its performance in evaluating intrinsic pKa values. Preliminary microscopic considerations of charge-charge interactions are presented.  相似文献   

10.
Increasingly complex schemes for representing solvent effects in an implicit fashion are being used in computational analyses of biological macromolecules. These schemes speed up the calculations by orders of magnitude and are assumed to compromise little on essential features of the solvation phenomenon. In this work we examine this assumption. Five implicit solvation models, a surface area-based empirical model, two models that approximate the generalized Born treatment and a finite difference Poisson-Boltzmann method are challenged in situations differing from those where these models were calibrated. These situations are encountered in automatic protein design procedures, whose job is to select sequences, which stabilize a given protein 3D structure, from a large number of alternatives. To this end we evaluate the energetic cost of burying amino acids in thousands of environments with different solvent exposures belonging, respectively, to decoys built with random sequences and to native protein crystal structures. In addition we perform actual sequence design calculations. Except for the crudest surface area-based procedure, all the tested models tend to favor the burial of polar amino acids in the protein interior over nonpolar ones, a behavior that leads to poor performance in protein design calculations. We show, on the other hand, that three of the examined models are nonetheless capable of discriminating between the native fold and many nonnative alternatives, a test commonly used to validate force fields. It is concluded that protein design is a particularly challenging test for implicit solvation models because it requires accurate estimates of the solvation contribution of individual residues. This contrasts with native recognition, which depends less on solvation and more on other nonbonded contributions.  相似文献   

11.
12.
13.
14.
Burykin A  Warshel A 《FEBS letters》2004,570(1-3):41-46
The nature of the electrostatic barrier for proton transport in aquaporins is analyzed by semimacroscopic and microscopic models. It is found that the barrier is associated with the loss of the generalized solvation energy upon moving from the bulk solvent to the center of the channel. It is clarified that our solvation concept includes the effect of the protein polar groups and ionized residues. The nature of the contributions to the solvation barrier is examined by using the linear response approximation. It is found that the residues in the NPA region contribute much less than what would be deduced from calculations that do not consider the protein reorganization. It is clarified that the contributions of different structural or electrostatic elements to the solvation barrier can be established by removing these elements and examining the corresponding effect on the barrier height. Using this definition and “mutating” the NPA residues to their non-polar analogues establishes that these residues do not provide the major contribution to the solvation barrier.  相似文献   

15.
16.
17.
Ion-solvent interactions play a very important role in the studies of stoichiometry, structure, and stability of complexes of cations with natural and synthetic ionophores. These compounds are extremely useful in study of the interaction of neutral salts with macromolecules and the mechanism of cation transport across biological membranes. Knowledge of the ionophore solvation properties enables one to choose a suitable solvent for complexation studies and to obtain detailed information on the solvent effect. We would like to present in this paper a very simple method of estimating the solvation properties of ionophores. We treat the ligand as an assembly of individual noninteracting binding sites. The solvation properties of solvents can be used to represent the solvation sites in natural and synthetic ligands. The solvation properties are represented by the Gutmann donor number (DN) of the model solvent. We can define the solvation ability of a ligand binding site be "donor number of binding site" (DN binding site), which in turn can be represented by the DN of the appropriate model solvent. The average DN of the ligand (DN average) is defined as [xi ni-1 (DN binding site)i]/n, where n is the number of the ligand binding sites. Comparison of the DN average with the DN solvent, together with the knowledge of the composition of the system, characterizes remarkably well the solvation properties of the ligand. This model explains (a) the stoichiometry of many alkali and alkaline earth cation complexes with natural and synthetic ligands in aprotic organic solvents, (b) the transport of alkali and alkaline earth cations across lipid bilayers, and (c) how polypeptides and proteins interact with neutral salts in solutions.  相似文献   

18.
Olson MA 《Proteins》2004,57(4):645-650
The treatment of hydration effects in protein dynamics simulations varies in model complexity and spans the range from the computationally intensive microscopic evaluation to simple dielectric screening of charge-charge interactions. This paper compares different solvent models applied to the problem of estimating the free-energy difference between two loop conformations in acetylcholinesterase. Molecular dynamics (MD) simulations were used to sample potential energy surfaces of the two basins with solvent treated by means of explicit and implicit methods. Implicit solvent methods studied include the generalized Born (GB) model, atomic solvation potential (ASP), and the distance-dependent dieletric constant. By using the linear response approximation (LRA), the explicit solvent calculations determined a free-energy difference that is in excellent agreement with the experimental estimate, while rescoring the protein conformations with GB or the Poisson equation showed inconsistent and inferior results. While the approach of rescoring conformations from explicit water simulations with implicit solvent models is popular among many applications, it perturbs the energy landscape by changing the solvent contribution to microstates without conformational relaxation, thus leading to non-optimal solvation free energies. Calculations applying MD with a GB solvent model produced results of comparable accuracy as observed with LRA, yet the electrostatic free-energy terms were significantly different due to optimization on a potential energy surface favored by an implicit solvent reaction field. The simpler methods of ASP and the distance-dependent scaling of the dielectric constant both produced considerable distortions in the protein internal free-energy terms and are consequently unreliable.  相似文献   

19.
Zhou R 《Proteins》2003,53(2):148-161
The Generalized Born (GB) continuum solvent model is arguably the most widely used implicit solvent model in protein folding and protein structure prediction simulations; however, it still remains an open question on how well the model behaves in these large-scale simulations. The current study uses the beta-hairpin from C-terminus of protein G as an example to explore the folding free energy landscape with various GB models, and the results are compared to the explicit solvent simulations and experiments. All free energy landscapes are obtained from extensive conformation space sampling with a highly parallel replica exchange method. Because solvation model parameters are strongly coupled with force fields, five different force field/solvation model combinations are examined and compared in this study, namely the explicit solvent model: OPLSAA/SPC model, and the implicit solvent models: OPLSAA/SGB (Surface GB), AMBER94/GBSA (GB with Solvent Accessible Surface Area), AMBER96/GBSA, and AMBER99/GBSA. Surprisingly, we find that the free energy landscapes from implicit solvent models are quite different from that of the explicit solvent model. Except for AMBER96/GBSA, all other implicit solvent models find the lowest free energy state not the native state. All implicit solvent models show erroneous salt-bridge effects between charged residues, particularly in OPLSAA/SGB model, where the overly strong salt-bridge effect results in an overweighting of a non-native structure with one hydrophobic residue F52 expelled from the hydrophobic core in order to make better salt bridges. On the other hand, both AMBER94/GBSA and AMBER99/GBSA models turn the beta-hairpin in to an alpha-helix, and the alpha-helical content is much higher than the previously reported alpha-helices in an explicit solvent simulation with AMBER94 (AMBER94/TIP3P). Only AMBER96/GBSA shows a reasonable free energy landscape with the lowest free energy structure the native one despite an erroneous salt-bridge between D47 and K50. Detailed results on free energy contour maps, lowest free energy structures, distribution of native contacts, alpha-helical content during the folding process, NOE comparison with NMR, and temperature dependences are reported and discussed for all five models.  相似文献   

20.
Characterization of solvent preferences of proteins is essential to the understanding of solvent effects on protein structure and stability. Although it is generally believed that solvent preferences at distinct loci of a protein surface may differ, quantitative characterization of local protein solvation has remained elusive. In this study, we show that local solvation preferences can be quantified over the entire protein surface from extended molecular dynamics simulations. By subjecting microsecond trajectories of two proteins (lysozyme and antibody fragment D1.3) in 4 M glycerol to rigorous statistical analyses, solvent preferences of individual protein residues are quantified by local preferential interaction coefficients. Local solvent preferences for glycerol vary widely from residue to residue and may change as a result of protein side-chain motions that are slower than the longest intrinsic solvation timescale of ~10 ns. Differences of local solvent preferences between distinct protein side-chain conformations predict solvent effects on local protein structure in good agreement with experiment. This study extends the application scope of preferential interaction theory and enables molecular understanding of solvent effects on protein structure through comprehensive characterization of local protein solvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号