首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Artificial zinc finger proteins (ZFPs) consist of Cys(2)-His(2)-type modules composed of ~30 amino acids with a ββα structure that coordinates a zinc ion. ZFPs that recognize specific DNA target sequences can substitute for the binding domains of enzymes that act on DNA to create designer enzymes with programmable sequence specificity. The most studied of these engineered enzymes are zinc finger nucleases (ZFNs). ZFNs have been widely used to model organisms and are currently in human clinical trials with an aim of therapeutic gene editing. Difficulties with ZFNs arise from unpredictable mutations caused by nonhomologous end joining and off-target DNA cleavage and mutagenesis. A more recent strategy that aims to address the shortcomings of ZFNs involves zinc finger recombinases (ZFRs). A thorough understanding of ZFRs and methods for their modification promises powerful new tools for gene manipulation in model organisms as well as in gene therapy. In an effort to design efficient and specific ZFRs, the effects of the DNA binding affinity of the zinc finger domains and the linker sequence between ZFPs and recombinase catalytic domains have been assessed. A plasmid system containing ZFR target sites was constructed for evaluation of catalytic activities of ZFRs with variable linker lengths and numbers of zinc finger modules. Recombination efficiencies were evaluated by restriction enzyme analysis of isolated plasmids after reaction in Escherichia coli and changes in EGFP fluorescence in mammalian cells. The results provide information relevant to the design of ZFRs that will be useful for sequence-specific genome modification.  相似文献   

2.
Site-specific recombinases have become essential tools in genetics and molecular biology for the precise excision or integration of DNA sequences. However, their utility is currently limited to circumstances where the sites recognized by the recombinase enzyme have been introduced into the DNA being manipulated, or natural 'pseudosites' are already present. Many new applications would become feasible if recombinase activity could be targeted to chosen sequences in natural genomic DNA. Here we demonstrate efficient site-specific recombination at several sequences taken from a 1.9 kilobasepair locus of biotechnological interest (in the bovine β-casein gene), mediated by zinc finger recombinases (ZFRs), chimaeric enzymes with linked zinc finger (DNA recognition) and recombinase (catalytic) domains. In the "Z-sites" tested here, 22 bp casein gene sequences are flanked by 9 bp motifs recognized by zinc finger domains. Asymmetric Z-sites were recombined by the concomitant action of two ZFRs with different zinc finger DNA-binding specificities, and could be recombined with a heterologous site in the presence of a third recombinase. Our results show that engineered ZFRs may be designed to promote site-specific recombination at many natural DNA sequences.  相似文献   

3.
锌指核酸酶(zinc finger nuclease, ZFN)是由特异性识别DNA的锌指结构域和Fok I切割结构域组成,能够在基因组特定位点上切割DNA,引起DNA双链断裂(double-strand break, DSB). 通过DSB修复机制,可以使基因修饰的效率比传统方法提高102~104倍.目前,利用ZFN对动物内源基因进行敲除的研究较多,但对转基因动物中外源多拷贝基因进行敲除的报道较少.本研究首先利用荧光定量PCR法对本实验室培育的两头转基因猪中增强型绿色荧光蛋白(enhanced green fluorescent protein, EGFP)基因的拷贝数进行鉴定,发现其拷贝数分别为11.95和17.36拷贝;然后将靶向EGFP的一对ZFN转染进拷贝数为1736的EGFP转基因猪的成纤维细胞中,并通过流式和CEL-1酶切方法检测敲除效率. 结果表明,转染400 ng、800 ng和1 200 ng ZFN的切割效率分别为0.97%、1.39%和1.76%,可见随着转染ZFN剂量的增加,ZFN的切割效率逐渐提高.但是,不发绿色荧光的细胞比例却没有明显提高,因此认为,ZFN敲除转基因动物中多拷贝基因的效率还是比较低.  相似文献   

4.
Zinc finger nucleases are a promising tool to edit DNA in many biological applications, in particular for gene knockout. Despite many efforts the number of genes that can be effectively targeted with ZFNs remains severely limited, as available constructs cannot address arbitrary gene sequences. Here, we develop a novel concept to significantly enhance the number of DNA sequences that can be targeted by ZFN. Using an efficient computational model, we provide an extensive library of possible linker molecules between individual zinc finger motifs in the construct that can skip up to 10 base pairs between adjacent zinc finger recognition sites in the DNA sequence, which increases the number of genes that can be efficiently targeted by more than an order of magnitude.  相似文献   

5.
Chimeric nucleases that are hybrids between a nonspecific DNA cleavage domain and a zinc finger DNA recognition domain were tested for their ability to find and cleave their target sites in living cells. Both engineered DNA substrates and the nucleases were injected into Xenopus laevis oocyte nuclei, in which DNA cleavage and subsequent homologous recombination were observed. Specific cleavage required two inverted copies of the zinc finger recognition site in close proximity, reflecting the need for dimerization of the cleavage domain. Cleaved DNA molecules were activated for homologous recombination; in optimum conditions, essentially 100% of the substrate recombined, even though the DNA was assembled into chromatin. The original nuclease has an 18-amino-acid linker between the zinc finger and cleavage domains, and this enzyme cleaved in oocytes at paired sites separated by spacers in the range of 6 to 18 bp, with a rather sharp optimum at 8 bp. By shortening the linker, we found that the range of effective site separations could be narrowed significantly. With no intentional linker between the binding and cleavage domains, only binding sites exactly 6 bp apart supported efficient cleavage in oocytes. We also showed that two chimeric enzymes with different binding specificities could collaborate to stimulate recombination when their individual sites were appropriately placed. Because the recognition specificity of zinc fingers can be altered experimentally, this approach holds great promise for inducing targeted recombination in a variety of organisms.  相似文献   

6.
Targeted gene addition to mammalian genomes is central to biotechnology, basic research and gene therapy. For example, gene targeting to the ROSA26 locus by homologous recombination in embryonic stem cells is commonly used for mouse transgenesis to achieve ubiquitous and persistent transgene expression. However, conventional methods are not readily adaptable to gene targeting in other cell types. The emerging zinc finger nuclease (ZFN) technology facilitates gene targeting in diverse species and cell types, but an optimal strategy for engineering highly active ZFNs is still unclear. We used a modular assembly approach to build ZFNs that target the ROSA26 locus. ZFN activity was dependent on the number of modules in each zinc finger array. The ZFNs were active in a variety of cell types in a time- and dose-dependent manner. The ZFNs directed gene addition to the ROSA26 locus, which enhanced the level of sustained gene expression, the uniformity of gene expression within clonal cell populations and the reproducibility of gene expression between clones. These ZFNs are a promising resource for cell engineering, mouse transgenesis and pre-clinical gene therapy studies. Furthermore, this characterization of the modular assembly method provides general insights into the implementation of the ZFN technology.  相似文献   

7.
锌指蛋白核酸酶的作用原理及其应用   总被引:1,自引:0,他引:1  
Zhong Q  Zhao SH 《遗传》2011,33(2):123-130
锌指蛋白核酸酶(Zinc finger nucleases,ZFN)因其能特异性识别并切割DNA序列以及可设计性,被用于基因定点突变和外源基因定点整合。目前,ZFN技术以其准确的靶位点设计能力和诱发高效率基因打靶的优势,越来越受到基因改造研究者的重视,已经成功应用于动植物细胞、胚胎的基因改造。随着鉴定靶DNA高亲和力的锌指蛋白(Zinc finger protein,ZFP)实验技术日渐成熟,可以预见到不久的将来这项技术会在基因工程和育种中得到广泛应用。文章介绍了锌指蛋白识别DNA靶位点和ZFN介导的基因打靶(Double strand break gene targeting,DSB-GT)的原理,同时还综述了目前ZFN技术用于基因改造的研究进展。  相似文献   

8.
Genome modification by homology‐directed repair (HDR) is an attractive tool for the controlled genetic manipulation of plants. Here, we report the HDR‐mediated gene exchange of expression cassettes in tobacco BY‐2 cells using a designed zinc finger nuclease (ZFN). The target contained a 7‐kb fragment flanked by two ZFN cutting sites. That fragment was replaced with a 4‐kb donor cassette, which integrates gene markers for selection (kanamycin resistance) and for scoring targeting (red fluorescent protein, RFP). Candidates resulting from cassette exchange were identified by molecular analysis of calli generated by transformation via direct DNA delivery. The precision of HDR‐mediated donor integration was evaluated by Southern blot analysis, sequencing of the integration locus and analysis of RFP fluorescence by flow cytometry. Screening of 1326 kanamycin‐resistant calli yielded 18 HDR events, 16 of which had a perfect cassette exchange at the insert junction and 13 of which produced functional RFP. Our results demonstrate that ZFN‐based HDR can be used for high frequency, precise, targeted exchange of fragments of sizes that are commercially relevant in plants.  相似文献   

9.
Genome editing is a powerful technique that can be used to elucidate gene function and the genetic basis of disease. Traditional gene editing methods such as chemical-based mutagenesis or random integration of DNA sequences confer indiscriminate genetic changes in an overall inefficient manner and require incorporation of undesirable synthetic sequences or use of aberrant culture conditions, potentially confusing biological study. By contrast, transient ZFN expression in a cell can facilitate precise, heritable gene editing in a highly efficient manner without the need for administration of chemicals or integration of synthetic transgenes. Zinc finger nucleases (ZFNs) are enzymes which bind and cut distinct sequences of double-stranded DNA (dsDNA). A functional CompoZr ZFN unit consists of two individual monomeric proteins that bind a DNA "half-site" of approximately 15-18 nucleotides (see Figure 1). When two ZFN monomers "home" to their adjacent target sites the DNA-cleavage domains dimerize and create a double-strand break (DSB) in the DNA. Introduction of ZFN-mediated DSBs in the genome lays a foundation for highly efficient genome editing. Imperfect repair of DSBs in a cell via the non-homologous end-joining (NHEJ) DNA repair pathway can result in small insertions and deletions (indels). Creation of indels within the gene coding sequence of a cell can result in frameshift and subsequent functional knockout of a gene locus at high efficiency. While this protocol describes the use of ZFNs to create a gene knockout, integration of transgenes may also be conducted via homology-directed repair at the ZFN cut site. The CompoZr Custom ZFN Service represents a systematic, comprehensive, and well-characterized approach to targeted gene editing for the scientific community with ZFN technology. Sigma scientists work closely with investigators to 1) perform due diligence analysis including analysis of relevant gene structure, biology, and model system pursuant to the project goals, 2) apply this knowledge to develop a sound targeting strategy, 3) then design, build, and functionally validate ZFNs for activity in a relevant cell line. The investigator receives positive control genomic DNA and primers, and ready-to-use ZFN reagents supplied in both plasmid DNA and in-vitro transcribed mRNA format. These reagents may then be delivered for transient expression in the investigator's cell line or cell type of choice. Samples are then tested for gene editing at the locus of interest by standard molecular biology techniques including PCR amplification, enzymatic digest, and electrophoresis. After positive signal for gene editing is detected in the initial population, cells are single-cell cloned and genotyped for identification of mutant clones/alleles.  相似文献   

10.
11.
We report here the partial characterization of a new human zinc finger (ZNF75) gene of the Kruppel type mapping to the long arm of the X chromosome. A cosmid clone was isolated from a library specific to the Xq24-qter region by hybridization to a degenerate oligonucleotide representing the link between two contigous fingers of the C2H2 type. The sequence of the pertinent cosmid fragments demonstrated five consecutive zinc finger motifs, all pertaining to the Kruppel family. A reading frame starting at least 75 amino acids before the first zinc finger and ending 11 amino acids after the last one was identified; comparison with other ZF genes suggests that this genomic fragment represents the carboxy-terminal exon of the gene. Homology of approximately 55% in the zinc finger region was detected with many zinc finger genes including mouse Zfp-35 and human ZFN7 cDNA clones. Mapping using a panel of sematic cell hybrids and chromosomal in situ hybridization localized the gene to Xq26, in a region not previously known to contain zinc finger genes.  相似文献   

12.
13.
Channel catfish (Ictalurus punctatus) is the most important freshwater aquaculture species in the USA. Genetically enhanced fish that are sterile could both profit the catfish industry and reduce potential environmental and ecological risks. As the first step to generate sterile channel catfish, three sets of zinc finger nuclease (ZFN) plasmids targeting the luteinizing hormone (LH) gene were designed and electroporated into one-cell embryos, different concentrations were introduced, and the Cel-I assay was conducted to detect mutations. Channel catfish carrying the mutated LH gene were sterile, as confirmed by DNA sequencing and mating experiments. The overall mutation rate was 19.7 % for 66 channel catfish, and the best treatment was ZFN set 1 at the concentration 25 μg/ml. To our knowledge, this is the first instance of gene editing of fish via plasmid introduction instead of mRNA microinjection. The introduction of the ZFN plasmids may have reduced mosaicism, as mutated individuals were gene edited in every tissue evaluated. Apparently, the plasmids were eventually degraded without integration, as they were not detectable in mutated individuals using PCR. Carp pituitary extract failed to induce spawning and restoration of fertility, indicating the need for developing other hormone therapies to achieve reversal of sterility upon demand. This is the first sterilization achieved using ZFN technology in an aquaculture species and the first successful gene editing of channel catfish. Our results will help understand the roles of the LH gene, purposeful sterilization of teleost fishes, and is a step towards control of domestic, hybrid, exotic, invasive, and transgenic fishes.  相似文献   

14.
锌指核酸酶(zinc finger nuclease,ZFN)技术是近年来发展起来的一种对基因组DNA实现靶向修饰的新技术。ZFN通过作用于基因组DNA上特异的靶位点产生DNA双链切口(double strand break,DSB),然后经过非同源末端连接(non-homologous end joining,NHEJ)或同源重组(homologous recombination,HR)途径实现对基因组DNA的靶向敲除或者替换。该技术近些年来已经被广泛应用于基因靶向修饰的研究。本文在简要介绍ZFN技术的基础上,重点综述了目前该技术在基因靶向修饰中的应用研究进展,并同时对该技术目前所需解决的一些问题以及未来的研究方向进行了分析。  相似文献   

15.
Engineered nucleases, which incise the genome at predetermined sites, have a number of laboratory and clinical applications. There is, however, a need for better methods for controlled intracellular delivery of nucleases. Here, we demonstrate a method for ligand-mediated delivery of zinc finger nucleases (ZFN) proteins using transferrin receptor-mediated endocytosis. Uptake is rapid and efficient in established mammalian cell lines and in primary cells, including mouse and human hematopoietic stem-progenitor cell populations. In contrast to cDNA expression, ZFN protein levels decline rapidly following internalization, affording better temporal control of nuclease activity. We show that transferrin-mediated ZFN uptake leads to site-specific in situ cleavage of the target locus. Additionally, despite the much shorter duration of ZFN activity, the efficiency of gene correction approaches that seen with cDNA-mediated expression. The approach is flexible and general, with the potential for extension to other targeting ligands and nuclease architectures.  相似文献   

16.
17.
Shiraishi Y  Imanishi M  Sugiura Y 《Biochemistry》2004,43(20):6352-6359
In the DNA recognition mode of C(2)H(2)-type zinc fingers, the finger-finger connection region, consisting of the histidine spacing (HX(3-5)H) and linker, would be important for determining the orientation of the zinc finger domains. To clarify the influence of spacing between two ligand histidines in the DNA binding, we exchanged the histidine spacing between Sp1 and GLI zinc fingers, which have an HX(3)H-TGEKK linker (typical) and an HX(4)H-SNEKP linker (atypical), respectively. A significant decrease in the DNA binding affinity and specificity is found in Sp1-type peptides, whereas GLI-type peptides show a mild reduction. To evaluate the effect of the linker characteristics, we further designed Sp1-type mutants with an SNEKP linker. As a result, the significant effect of the histidine spacing in Sp1-type peptides was reduced. These results demonstrate that (1) the histidine spacing significantly affects the DNA binding of zinc finger proteins and (2) the histidine spacing and the following linker regions are one effective target for regulating the DNA recognition mode of zinc finger proteins.  相似文献   

18.
Engineered zinc finger nucleases (ZFNs) induce DNA double-strand breaks at specific recognition sequences and can promote efficient introduction of desired insertions, deletions or substitutions at or near the cut site via homology-directed repair (HDR) with a double- and/or single-stranded donor DNA template. However, mutagenic events caused by error-prone non-homologous end-joining (NHEJ)-mediated repair are introduced with equal or higher frequency at the nuclease cleavage site. Furthermore, unintended mutations can also result from NHEJ-mediated repair of off-target nuclease cleavage sites. Here, we describe a simple and general method for converting engineered ZFNs into zinc finger nickases (ZFNickases) by inactivating the catalytic activity of one monomer in a ZFN dimer. ZFNickases show robust strand-specific nicking activity in vitro. In addition, we demonstrate that ZFNickases can stimulate HDR at their nicking site in human cells, albeit at a lower frequency than by the ZFNs from which they were derived. Finally, we find that ZFNickases appear to induce greatly reduced levels of mutagenic NHEJ at their target nicking site. ZFNickases thus provide a promising means for inducing HDR-mediated gene modifications while reducing unwanted mutagenesis caused by error-prone NHEJ.  相似文献   

19.
Zinc-finger nucleases (ZFNs) drive efficient genome editing by introducing a double-strand break into the targeted gene. Cleavage is induced when two custom-designed ZFNs heterodimerize upon binding DNA to form a catalytically active nuclease complex. The importance of this dimerization event for subsequent cleavage activity has stimulated efforts to engineer the nuclease interface to prevent undesired homodimerization. Here we report the development and application of a yeast-based selection system designed to functionally interrogate the ZFN dimer interface. We identified critical residues involved in dimerization through the isolation of cold-sensitive nuclease domains. We used these residues to engineer ZFNs that have superior cleavage activity while suppressing homodimerization. The improvements were portable to orthogonal domains, allowing the concomitant and independent cleavage of two loci using two different ZFN pairs. These ZFN architectures provide a general means for obtaining highly efficient and specific genome modification.  相似文献   

20.
A transgene, flanked by zinc finger nuclease (ZFN) cleavage sites, was deleted from a stably transformed plant by crossing it with a second plant expressing a corresponding ZFN gene. A target construct, containing a GUS reporter gene flanked by ZFN cleavage sites, a GFP reporter gene and a PAT selectable marker gene, was transformed into tobacco. Basta®-resistant plants were regenerated and screened for GUS and GFP expression. A second construct, containing a ZFN gene driven by the constitutive CsVMV promoter and an HPT selectable marker gene, was also transformed into tobacco. Selected T0 plants were grown to maturity and allowed to self-pollinate. Homozygous target plants, which expressed GUS and GFP, were crossed with homozygous ZFN plants, which expressed the ZFN gene. Numerous GUS-negative plants were observed among the hybrids with one particular cross displaying ~35% GUS-negative plants. Evidence for complete deletion of a 4.3 kb sequence comprising the GUS gene was obtained and sequence confirmed. Co-segregation in F2 progenies of ‘truncated’ and ‘intact’ target sequences with expected reporter gene phenotypes were observed. Since ZFNs can be designed to bind and cleave a wide range of DNA sequences, these results constitute a general strategy for creating targeted gene deletions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号