首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Qin Zhou  David S. Haymer 《Genetica》1997,101(3):167-178
We have isolated and characterized a new LTR-retrotransposon in the genome of the Mediterranean fruit fly (Medfly), Ceratitis capitata. This retrotransposon, which we named yoyo, appears to be a member of the gypsy/Ty3 class of elements. The yoyo element was originally discovered on the Y chromosome of the Medfly. Although the Y chromosome copy appears to be truncated, at least two other apparently complete copies of yoyo from other genomic locations have been isolated and characterized. The complete element is approximately 7.7 kb in size. In addition to fairly typical GAG and POL coding regions, the yoyo element contains a potential ENV gene. The presence of an ENV gene is a key feature distinguishing potential retroviral-like elements, such as gypsy (and possibly yoyo), from many other invertebrate retrotransposons previously described. In addition to the structural features of yoyo, evidence is provided to show that yoyo is capable of movement in the genome, including RFLPs showing variability in genomic localization of copies of yoyo between strains, and differences among individuals in the presence of yoyo at a specific site in the genome. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
A cosmid genomic library from a known gypsy-induced forked mutation, f1, was screened by 32P-labeled gypsy transposable element. Of more than 250 positive clones we randomly selected 21 for in situ hybridization to wild-type polytene chromosomes. Two clones hybridized to region 15F on the X-chromosome, the cytological position of forked. A third clone hybridized to at least 17 sites on the chromosomes indicating the presence of repetitive sequences in the gypsy flanking DNA. All clones labeled the centromeric regions heavily. Ten clones, including the two hybridizing at 15F, were chosen for further analysis, and restriction mapping allowed us to place them into three groups: (1) full-length, (2) slightly diverging, and (3) highly diverging gypsy elements. Group (2) is missing the XbaI site in both their long terminal repeats (LTRs) as well as the middle HindIII site; four of these gypsy elements also have a approximately 100-bp deletion at the 5' LTR. The group (3) gypsy transposons are missing one LTR and also have highly diverging DNA sequences. The restriction analyses further imply that most of these different gypsy elements are present in more than one copy in the genome of the f1 stock used in this study. The results raise intriguing questions regarding the significance of transposable elements in evolution and biological functions.  相似文献   

3.
4.
5.
6.
7.
8.
Peptide mass fingerprint (PMF) matching is a high-throughput method used for protein spot identification in connection with two-dimensional gel electrophoresis (2DE). However, the success of PMF matching largely depends on whether the proteins to be identified exist in the database searched. Consequently, it is often necessary to apply other more sophisticated but also time-consuming technologies to generate sequence-tags for definitive protein identification. On the other hand, modern sequencing technologies are generating a large quantity of DNA sequences, first in unfinished form or with low genome coverage due to the time-consuming and thus limiting steps of finishing and annotation. We recently started to sequence the genome of Bacillus megaterium DSM 319, a bacterium of industrial interest. In this study, we demonstrate that a protein database generated from merely three-fold coverage, unfinished genomic sequences of this bacterium allows a fast and reliable protein spot identification solely based on PMF from high-throughput MALDI-TOF MS analysis. We further show that the strain-specific protein database from low coverage genomic sequence greatly outperforms the commonly used cross-species databases constructed from 13 completely sequenced Bacillus strains for protein spot identification via PMF.  相似文献   

9.
We have detected seventy-six novel LTR retrotransposons in the genome of the mosquito Aedes aegypti by a genome wide analysis using the LTR_STRUC program. We have performed a phylogenetic classification of these novel elements and a distribution analysis in the genome of A. aegypti. These mobile elements belong either to the Ty3/gypsy or to the Bel family of retrotransposons and were not annotated in the mosquito LTR retrotransposon database (TEfam). We have found that  1.8% of the genome is occupied by these newly detected retrotransposons that are distributed predominantly in intergenic genomic sequences and introns. The potential role of retrotransposon insertions linked to host genes is described and discussed. We show that a retrotransposon family belonging to the Osvaldo lineage has peculiar structural features, and its presence is likely to be restricted to the A. aegypti and to the Culex pipiens quinquefasciatus genomes. Furthermore we show that the ninja-like group of elements lacks the Primer Binding Site (PBS) sequence necessary for the replication of retrotransposons. These results integrate the knowledge on the complicate genomic structure of an important disease vector.  相似文献   

10.

Background

Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution.

Results

A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed.

Conclusions

The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives. This study represents a first step in the development of a community resource for further study of plant-insect co-evolution, anti-herbivore defense, floral developmental genetics, reproductive biology, chemical evolution, population genetics, and comparative genomics using milkweeds, and A. syriaca in particular, as ecological and evolutionary models.  相似文献   

11.
The tuatara (Sphenodon punctatus) is of "extraordinary biological interest" as the most distinctive surviving reptilian lineage (Rhyncocephalia) in the world. To provide a genomic resource for an understanding of genome evolution in reptiles, and as part of a larger project to produce genomic resources for various reptiles (evogen.jgi.doe.gov/second_levels/BACs/our_libraries.html), a large-insert bacterial artificial chromosome (BAC) library from a male tuatara was constructed. The library consists of 215 424 individual clones whose average insert size was empirically determined to be 145 kb, yielding a genomic coverage of approximately 6.3x. A BAC-end sequencing analysis of 121 420 bp of sequence revealed a genomic GC content of 46.8%, among the highest observed thus far for vertebrates, and identified several short interspersed repetitive elements (mammalian interspersed repeat-type repeats) and long interspersed repetitive elements, including chicken repeat 1 element. Finally, as a quality control measure the arrayed library was screened with probes corresponding to 2 conserved noncoding regions of the candidate sex-determining gene DMRT1 and the DM domain of the related DMRT2 gene. A deep coverage contig spanning nearly 300 kb was generated, supporting the deep coverage and utility of the library for exploring tuatara genomics.  相似文献   

12.
The basidiomycete Paxillus involutus is forming ectomycorrhizal symbiosis with a broad range of forest trees. Reassociation kinetics on P. involutus nuclear DNA indicated a haploid genome size of 23 Mb including 11% of repetitive DNA. A similar genome size (20 Mb) was estimated by genomic reconstruction analysis using three single copy genes. To assess the gene density in the P. involutus genome, a cosmid containing a 33-kb fragment of genomic DNA was sequenced and used to identify putative open reading frames (ORFs). Twelve potential ORFs were predicted, eight displayed significant sequence similarities to known proteins found in other organisms and notably, several homologues to the Podospora anserina vegetative incompatibility protein (HetE1) were found. By extrapolation, we estimate the total number of genes in the P. involutus haploid genome to approximately 7700.  相似文献   

13.
The contiguous DNA sequence of a 60 kb genomic interval of barley chromosome 4HL has been assembled. The region harbours a single and novel gypsy -like retrotransposon, designated BAGY-1. Only three genes appear to reside in the genomic stretch. One predicts a plant homologue of ribophorin I, a subunit of the oligosaccharyltransferase-protein complex located in the rough endoplasmatic reticulum. The second is similar to the Drosophila g1 gene encoding a ring finger protein involved in developmental processes. The observed gene density is approximately 5-fold lower than in the best characterized dicot genome of Arabidopsis but 6- to 10-fold higher than expected from an equidistant gene distribution in the complex barley genome. Our data suggest that the 60 kb genomic interval represents part of a gene island, a seemingly distinctive feature of grass genomes.  相似文献   

14.
The retroviral mutation rate is susceptible to a number of variables, including the balance between intracellular deoxynucleoside triphosphate (dNTP) pools. While this follows from tissue culture studies, the issue has never been addressed directly in vivo. To explore this question in a tractable experimental system, we analyzed the impact of thymidine treatment on the synthesis of gypsy retroelement cDNA from Drosophila melanogaster during development through to hatching. The mutation frequency was enhanced approximately 16-fold over the levels seen in the experimental background. Due to the lack of proofreading, these gypsy elements represent hypervariable loci within the Drosophila genome, suggesting that dNTP pool imbalances in vivo are mutagenic.  相似文献   

15.
Characterizing the walnut genome through analyses of BAC end sequences   总被引:1,自引:0,他引:1  
Persian walnut (Juglans regia L.) is an economically important tree for its nut crop and timber. To gain insight into the structure and evolution of the walnut genome, we constructed two bacterial artificial chromosome (BAC) libraries, containing a total of 129,024 clones, from in vitro-grown shoots of J. regia cv. Chandler using the HindIII and MboI cloning sites. A total of 48,218 high-quality BAC end sequences (BESs) were generated, with an accumulated sequence length of 31.2?Mb, representing approximately 5.1% of the walnut genome. Analysis of repeat DNA content in BESs revealed that approximately 15.42% of the genome consists of known repetitive DNA, while walnut-unique repetitive DNA identified in this study constitutes 13.5% of the genome. Among the walnut-unique repetitive DNA, Julia SINE and JrTRIM elements represent the first identified walnut short interspersed element (SINE) and terminal-repeat retrotransposon in miniature (TRIM) element, respectively; both types of elements are abundant in the genome. As in other species, these SINEs and TRIM elements could be exploited for developing repeat DNA-based molecular markers in walnut. Simple sequence repeats (SSR) from BESs were analyzed and found to be more abundant in BESs than in expressed sequence tags. The density of SSR in the walnut genome analyzed was also slightly higher than that in poplar and papaya. Sequence analysis of BESs indicated that approximately 11.5% of the walnut genome represents a coding sequence. This study is an initial characterization of the walnut genome and provides the largest genomic resource currently available; as such, it will be a valuable tool in studies aimed at genetically improving walnut.  相似文献   

16.
A macrorestriction map of the genome of Mycoplasma hyopneumoniae strain J, the type strain of the causative agent of enzootic pneumonia in pigs, was constructed using pulsed-field gel electrophoresis (PFGE) and DNA hybridization. The size of the genome as determined by PFGE was approximately 1070 kb. Assembly of the M. hyopneumoniae genomic map was facilitated and complimented by the simultaneous construction of an ordered cosmid library. Five contigs of overlapping cosmids were assembled, which together represent coverage of approximately 728 kb. Forty-two genetic markers (including three types of repeated elements) were placed on the M. hyopneumoniae map. Closer examination of an ApaI restriction fragment contained entirely within a single cosmid insert suggests that the genome size may be overestimated by PFGE.  相似文献   

17.
The analysis of 460 kb of genomic sequence of Arabidopsis thaliana chromosome III allowed us to identify two new transposable elements named AtC1 and AtC2. AtC1 shows identical long terminal repeats (LTRs) and all the structural features characteristic of the copia-like active elements. AtC2 is also a full copia-like element, but a putative stop codon in the open reading frame (ORF) would produce a truncated protein. In order to identify the copia-like fraction of the A. thaliana genome, a careful computer-based analysis of the available sequences (which correspond to 92% of the genome) was performed. Approximately 300 nonredundant copia-like sequences homologous to AtC1 and AtC2 were detected, which showed an extreme heterogeneity in size and degree of conservation. This number of copies would correspond to approximately 1% of the A. thaliana genome. Seventy-one sequences were selected for further analysis, with 23 of them being full complete elements. Five corresponded to previously described ones, and the remaining ones, named AtC3 to AtC18 are new elements described in this work. Most of these elements presented a putative functional ORF, nearly identical LTRs, and the other elements necessary for retrotransposon activity. Phylogenetic trees, supported by high bootstrap values, indicated that these 23 elements could be considered separate families. In turn, these 23 families could be clustered into six major lineages, named copia I-VI. Most of the 71 analyzed sequences clustered into these six main clades. The widespread presence of these copia-like superfamilies throughout plant genomes is discussed.  相似文献   

18.
19.
A BAC library was constructed from the genomic DNA of an intergeneric Citrus and Poncirus hybrid. The library consists of 24,576 clones with an average insert size of 115 kb, representing approximately seven haploid genome equivalents and is able to give a greater than 99% probability of isolating single-copy citrus DNA sequences from this library. High-density colony hybridization-based library screening was performed using DNA markers linked to the citrus tristeza virus (CTV) resistance gene and citrus disease resistance gene candidate (RGC) sequences. Between four and eight clones were isolated with each of the CTV resistance gene-linked markers, which agrees with the library’s predicted genome coverage. Three hundred and twenty-two clones were identified using 13 previously cloned citrus RGC sequences as probes in library screening. One to four fragments in each BAC were shown to hybridize with RGC sequences. One hundred and nine of the RGC BAC clones were fingerprinted using a sequencing gel-based procedure. From the fingerprints, 25 contigs were assembled, each having a size of 120–250 kb and consisting of 2–11 clones. These results indicate that the library is a useful resource for BAC contig construction and molecular isolation of disease resistance genes. Received: 22 May 2000 / Accepted: 25 September 2000  相似文献   

20.
 A high-density genetic map of the rice blast fungus Magnaporthe grisea (Guy11×2539) was constructed by adding 87 cosmid-derived RFLP markers to previously generated maps. The new map consists of 203 markers representing 132 independently segregating loci and spans approximately 900 cM with an average resolution of 4.5 cM. Mapping of 33 cosmid probes from the genetic map generated by Sweigard et al. has allowed the integration of two M. grisea maps. The integrated map showed that the linear order of markers along all seven chromosomes in both maps is in good agreement. Thirty of eighty seven markers were derived from cosmid clones that contained the retrotransposon MAGGY (M. grisea gypsy element). Mapping of single-copy DNA sequences associated with the MAGGY cosmids indicated that MAGGY elements are scattered throughout the fungal genome. In eight cases, the probes associated with MAGGY elements showed abnormal segregation patterns. This suggests that MAGGY may be involved in genomic rearrangements. Two RFLP probes linked to MAGGY elements, and another flanking other repetitive DNA elements, identified sequences that were duplicated in the Guy11 genome. Most of the MAGGY cosmids also contained other classes of repetitive DNA suggesting that repetitive DNA sequences tend to cluster in the M. grisea genome. Received: 17 February 1997 / Accepted: 21 February 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号