首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amelioration of chilling stress by triadimefon in cucumber seedlings   总被引:11,自引:0,他引:11  
Cucumber (Cucumis satvus L.) seeds were imbibed in distilled water (control) and 10 mg l–1 triadimefon (TDM) for 10 h and then grown in a plant growth chamber with a light/dark temperature of 28/20 °C and a photoperiod of 14 h with a light intensity of 60 µmol m–2 s–1. 14-day-old seedlings were exposed to chilling stress with a light/dark temperature of 6/3 °C for 4 d. TDM improved the growth rate of cucumber seedling subjected to chilling stress and increased photosynthetic pigments contents and relative water content compared with the control at the end of chilling stress. Chilling stress decreased protein content and the activities of SOD, CAT and POD, but it increased proline, H2O2 and MDA accumulation, and relative electrical conductivity. TDM ameliorated the injury caused by chilling stress by preventing decreases in protein content and the activities of SOD, CAT and POD and by inhibiting increases in proline, H2O2 and MDA contents, and relative electrical conductivity, which suggested that TDM ameliorated the negative effect of chilling stress.  相似文献   

2.
Summary Immersion of Lilium longiflorum pistils in 49 °C water for increasing durations of 1,2,3, or 4 minutes immediately prior to incompatible pollination resulted in a correspondingly progressive decrease in the stylar self-incompatibility competence, as determined from the lengths attained by pollen tubes during 48 hours growth in the styles at 24 °C. Neither pistils remaining on the plant nor those detached from the plant which were immersed after anthesis in 49 °C water for 5 minutes regained self-incompatibility competence during a 48 hour incubation at 24 °C prior to incompatible pollination. Heat treatment of detached pistils as early as 39 hours prior to bud anthesis also resulted in an inactivation of stylar self-incompatibility competence when incompatible pollination was made at 24 hours after anthesis. Experiments utilizing heat treatment of partial lengths of detached whole styles revealed that pollen tubes which have grown through as much at 45 millimeters of either a physiologically incompatible or compatible portion of the style are still capable of shifting to either a higher growth rate or lower growth rate upon entry into respectively either a physiologically compatible or incompatible portion of the style.  相似文献   

3.
Summary Two controlled environment experiments were conducted to examine the germination and early growth of wheat (Triticum aestivum L. cv. Songlen) growing under crop residues of rape, sorghum, field pea and wheat. Additional treamments also included were soil type (Lithic Vertic Ustochrept and Plinthustalf) and temperature (8°C and 24°C to simulate winter and autumn sowing conditions). At low temperature, wheat and sorghum residues produced the most adverse effects on germination with all residues reducing emergence at high temperatures. Shoot lengths were also reduced by most residues at high temperatures whilst root lengths and shoot and root dry weights were unaffected by residue treatments. These results suggest major phytotoxic effects of residues during early growth (up to 14 days after sowing) with, in general, few interactions with soil type or temperature.  相似文献   

4.
McDonald  G.K.  Paulsen  G.M. 《Plant and Soil》1997,196(1):47-58
Effects of high temperature on photosynthesis, and its interaction with water relations in common bean (Phaseolus vulgaris), cowpea (Vigna unguiculata), faba bean (Vicia faba), and five cultivars of field pea (Pisum sativum) were investigated. Responses of all species were compared at 20/15, 30/15, or 30/25 °C day/night, and cowpea and pea were compared at 20/15 and 30/25 °C under well-watered and limited-water conditions. Response of pea to 20/15 and 30/25 °C during flowering was ascertained, and sensitivity of the photosystem of pea and faba bean to 40 °C was determined.High temperature decreased chlorophyll variable fluorescence (Fv), a measure of injury to photosynthesis, in all species except cowpea, which was highly tolerant. Leaf chlorophyll and most measures of growth were favored by high day temperature but not by high night temperature, and photosynthetic rates were enhanced by high temperatures that increased leaf chlorophyll and nitrogen (N) contents. High temperature diminished growth less than water deficiency and increased water use of all three species but only lowered the water potential in faba bean. Water deficiency generally decreased growth, water use, and water potential more at 30/25 °C than at 20/15 °C. Stress from high temperature during flowering of pea decreased all components of yield at maturity, particularly at nodes that flowered latest. Whole-chain photosynthetic activity in thylakoids of pea, faba bean, and wheat (Triticum aestivum) were equally sensitive to high temperature, suggesting that Photosystem Il was the most labile component. The results show that high temperature affects photosynthesis, growth, and water relations of grain legumes, and sensitivity to the stress differs among species and genotypes.  相似文献   

5.
An almost twofold increase in abscisic acid (ABA) content was observed in the leaves of winter oilseed rape plants (Brassica napus L., var. oleifera L., cv. Jantar) grown in the cold (>0°C). This ABA increase took place during the first three days of cold treatment. After 6 days of plant growth in the cold, the level of ABA started to decline or remained constant, depending on the calculation basis: dry weight or disc area units, respectively. The exposure of cold-acclimated plants to night frost (–5°C for 18 h) induced a further increase (65%) in the ABA level, which begun during the first few hours after thawing. The comparison of time courses of frost resistance increments and ABA content changes showed that modifications of ABA level in the cold-treated leaves preceded those of frost resistance, whereas in the frost-pretreated tissues the ABA increase occurred later than that of frost tolerance. Possible interrelations between ABA content, frost tolerance and tissue water potential modifications in the low temperature-affected tissues are discussed.  相似文献   

6.
丛国强  尹成林  何邦令  李玲  高克祥 《生态学报》2015,35(18):6120-6128
为明确不同水分条件下内生真菌对冬小麦苗期生长和抗旱性的影响,以抗旱型小麦品种山农16和水分敏感型小麦品种山农22为材料,利用荧光定量PCR技术检测小麦干旱诱导基因脱水素wzy2的表达量来了解冬小麦在干旱胁迫下相关基因的表达差异,通过测定相关生理指标与酶活性来判断小麦发育及其在干旱胁迫下的生理响应状况。结果表明,与正常水分ND35组相比,接种球毛壳菌(Chaetomium globosum)ND35的干旱处理组小麦的根冠比、总蛋白含量、脯氨酸含量及丙二醛含量等指标显著提高,小麦叶片含水量和可溶性糖含量有所降低。在干旱处理组中,球毛壳菌ND35可以显著提高小麦山农16的根长和山农22的株高,接种球毛壳ND35的山农16脯氨酸含量、可溶性糖含量、过氧化氢酶活性比对照组均显著提高,丙二醛含量比对照组降低9.0%,但差异不显著;山农22脯氨酸含量和过氧化氢酶活性比对照组显著提高,丙二醛含量和可溶性糖含量比对照组有所降低,但可溶性糖含量差异不显著;相对定量检测数据显示,接种球毛壳ND35后,两种小麦脱水素wzy2基因的表达量较对照组均能够显著提高。综合分析说明内生真菌球毛壳ND35可以促进冬小麦苗期根系和植株发育,小麦提前进入三叶期,增强小麦避旱性,同时提高小麦根系活力,增强小麦耐旱性;提高个体细胞内水分、糖分、脯氨酸含量,降低丙二醛的氧化性损伤,增强过氧化氢酶活性,从而提高两种冬小麦对干旱胁迫的耐受能力;球毛壳ND35促进小麦干旱诱导相关基因wzy2的表达量,进而提高抗旱相关蛋白的表达,从而提高两种冬小麦耐脱水性和对干旱胁迫的适应性。  相似文献   

7.
The effects of donor plant growth temperature and photoperiod on embryo formation and plant regeneration from cultured anthers in five genotypes of soft-red winter wheat (Triticum aestivum L.) were examined. There were no significant differences between the three environments studied (15°C - 16/8 h light/dark, 20°C - 16/8 h light/dark, and 20°C - 12/12 h light/dark) when frequencies were averaged over genotypes; however, significant genotype and genotype x environment interactions were observed for embryo formation. When averaged over environments, highest embryo and plant production frequencies were exhibited by a line derived from the cross IL 72-2219-1/Amigo. A mean of 8.6 embryos per 100 anthers plated was observed for this genotype grown in the 20°C - 16/8 h light/dark environment. The cultivar Scotty averaged 4.2 plants produced per 100 anthers plated when grown in the 15°C - 16/8 h light/dark environment. The results from this study suggest a potential for increasing embryo and plant production in this material and point toward the need to optimize donor plant growth environmental conditions to maximize response frequencies for specific genotypes of interest.  相似文献   

8.
Plant-growth-promoting bacteria isolated from the rhizosphere andphyllosphere were analysed for their colonization and growth-promoting effectson winter wheat and pea at different temperatures. The investigations werecarried out in pot experiments using loamy sand in Germany. The colonization ofstrains Cellulomonas sp. 21/2 andCellulomonas sp. 43 in the rhizosphere of winter wheat andpea were much better at 16 °C than that at 26°C. The inoculation with effective bacterial strainssignificantly increased the root and shoot growth of winter wheat and pea at 16more than at 26 °C. Bacterial inoculation also resulted insignificantly higher amount of N, P, and K contents of plant components.  相似文献   

9.
This investigation was performed to study the effect on plant water relations and growth when some of roots grow into dry soil. Common spring water (Triticum aestivum) plants were grown from seed in soil in 1.2 m long PVC (polyvinyl chloride) tubes. Some of the tubes had a PVC partition along their center so that plants developed a split root system (SPR). Part of the roots grew in fully irrigated soil on one side of the partition while the rest of the roots grew into a very dry (-4.1 MPa) soil on the other side of the partition. Split root plants were compared with plants grown from emergence on stored soil moisture (STOR) and with plants that were fully irrigated as needed (IRR). The experiment was duplicated over two temperature regimes (10°/20°C and 15°/25°C, night/day temperatures) in growth chambers. Data were collected on root dry matter distribution, soil moisture status, midday leaf water potential (LWP), leaf relative water content (RWC) and parameters of plant growth and yield.Some roots were found in the dry side of SPR already at 21 DAE (days after emergence) at a soil depth of 15 to 25 cm. Soil water potential around these roots was -0.7 to -1.0 MPa at midday, as compared with the initial value of -4.1 MPa. Therefore, water apparently flowed from the plant into the dry soil, probably during the night. Despite having most of their roots (around 2/3 of the total) in wet soil, SPR plants developed severe plant water stress, even in comparison with STOR plants. Already at 21 DAE, SPR plants had a LWP of -1.5 to -2.0 MPa, while IRR and STOR had a LWP of -0.5 MPa or higher. As a consequence of their greater plant water stress, SPR as compared with IRR plants were lower in tiller number, ear number, shoot dry matter, root dry matter, total biomass, plant height and grain yield and had more epicuticular wax on their leaves.It was concluded that the exposure of a relatively small part of a plant root system to a dry soil may result in a plant-to-soil water potential gradient which may cause severe plant water stress, leading to reduced plant growth and yield.  相似文献   

10.
Seed germination and early seedling growth bioassays were used to evaluate phytotoxicity of simulated oilfield produced water (OPW) before and after treatment in a subsurface-flow, pilot-scale constructed wetland treatment system (CWTS). Responses to untreated and treated OPW were compared among seven plant species, including three monocotyledons: corn (Zea mays), millet (Panicum miliaceum), and sorghum (Sorghum bicolor); and four dicotyledons: lettuce (Lactuca sativa), okra (Abelmoschus esculents), watermelon (Citrullus lanatus), and soybean (Glycine max). Phytotoxicity was greater in untreated OPW than in treated OPW. Exposures to untreated and treated OPW enhanced growth in some plant species (sorghum, millet, okra, and corn) relative to a negative control and reduced growth in other plant species (lettuce, soybean, and watermelon). Early seedling growth parameters indicated that dicotyledons were more sensitive to test waters compared to monocotyledons, suggesting that morphological differences between plant species affected phytotoxicity. Results indicated the following sensitivity scale for plant species: lettuce > soybean > watermelon > corn> okra≈millet >sorghum. Phytotoxicity of the treated OPW to lettuce and soybean, although concentrations of COCs were less than irrigation guideline concentrations, suggests that chemical characterization and comparison to guideline concentrations alone may not be sufficient to evaluate water for use in growing crops.  相似文献   

11.
Damage to primary photosynthetic reactions by drought, excess light and heat in leaves of Macroptilium atropurpureum Dc. cv. Siratro was assessed by measurements of chlorophyll fluorescence emission kinetics at 77 K (-196°C). Paraheliotropic leaf movement protected waterstressed Siratro leaves from damage by excess light (photoinhibition), by heat, and by the interactive effects of excess light and high leaf temperatures. When the leaves were restrained to a horizontal position, photoinhibition occurred and the degree of photoinhibitory damage increased with the time of exposure to high levels of solar radiation. Severe inhibition was followed by leaf death, but leaves gradually recovered from moderate damage. This drought-induced photoinhibitory damage seemed more closely related to low leaf water potential than to low leaf conductance. Exposure to leaf temperatures above 42°C caused damage to the photosynthetic system even in the dark and leaves died at 48°C. Between 42 and 48°C the degree of heat damage increased with the time of exposure, but recovery from moderate heat damage occurred over several days. The threshold temperature for direct heat damage increased with the growth temperature regime, but was unaffected by water-stress history or by current leaf water status. No direct heat damage occurred below 42°C, but in water-stressed plants photoinhibition increased with increasing leaf temperature in the range 31–42°C and with increasing photon flux density up to full sunglight values. Thus, water stress evidently predisposes the photosynthetic system to photoinhibition and high leaf temperature exacerbates this photoinhibitory damage. It seems probable that, under the climatic conditions where Siratro occurs in nature, but in the absence of paraheliotropic leaf movement, photoinhibitory damage would occur more frequently during drought than would direct heat damage.Abbreviations and symbols PFD photon flux area density - PSI, PSII photosyntem I, II - F M, F O, F V maximum, instantaneous, variable fluorescence emission - PLM paraheliotropic leaf movement; all data of parameter of variation are mean ± standard error  相似文献   

12.
Soluble aluminium (Al) is a major factor limiting plant growth in acid mineral soils. Aluminium concentrations in soil solutions are mainly determined by soil pH. However, pH also affects the ratio between activities of protons and cationic Al species and the equilibrium between mono-and polynuclear hydroxy-Al species. The phytotoxicity of these species is not yet clear. The objective of the present study was to clarify the role of minor changes of pH in the rhizosphere on Al phytotoxicity in two Al-tolerant plant species by direct control of the pH in the nutrient solution (4.1, 4.3, 4.5) and in addition by varying the pH in the root apoplast using either nitrate or ammonium as N source. The plants were grown in solution culture at constant external pH. Whereas the Al-sensitive plant species barley and horse bean were damaged at very low Al supplies (1.85 μM and 9.3 μM respectively), 222 μM had to be applied to rye and yellw lupin for a comparable inhibition of root elongation. Yellow lupin was initially severely inhibited in root growth by Al, but then gradually recovered from this ‘Al shock’ within 3 days. In contrast to lupin, rye was hardly affected by Al initially, and it took about 16 h until maximum inhibition of root elongation. In the presence of nitrate, raising the pH from 4.1 to 4.5 aggravated root-growth depression by Al in rye and lupin. Whereas rye roots were severely damaged by ammonium especially at low pH, lupin was rather indifferent to the N source. Aluminium toxicity was less severe in presence of ammonium compared to nitrate N. This effect was less clear with rye at lower pH, because of it's higher proton sensitivity compared to lupin. Less Al injury at lower pH and in presence of ammonium was related to lower Al concentrations in the 1 cm root tips. The results are compatible with data showing high phytotoxicity of mononuclear and polynuclear hydroxy-Al species. However, they could also be interpreted in the light of proton amelioration of Al toxicity owing to competition for Al-sensitive binding sites in the root apoplast.  相似文献   

13.
The absorption and translocation of fenoxaprop-ethyl and imazamethabenz-methyl were investigated in wild oat (Avena fatua L.) plants grown under different temperature and light intensity conditions by using 14C tracer techniques. The phytotoxicity of both herbicides, applied as individual droplets, was also determined under similar environments. The absorption of fenoxaprop-ethyl and imazamethabenz-methyl was increased by high temperature (30/20°C) and to a lesser extent by 70% shading; low temperature (10/5°C) had limited effect on the absorption. The basipetal translocation of fenoxaprop-ethyl was not affected by high temperature, and the increase in imazamethabenz-methyl translocation at high temperature was likely the result of the increased absorption. Low temperature decreased total translocation and translocation efficiency in both fenoxaprop-ethyl and imazamethabenz-methyl. Low light intensity tended to reduce the efficiency of basipetal translocation of both herbicides. Fenoxaprop-ethyl phytotoxicity was reduced by high temperature but not by low temperature. Temperature had little effect on imazamethabenz-methyl effectiveness. Under 70% shading, the phytotoxicity of both herbicides was enhanced.Abbreviation S.E.D. standard errors of difference  相似文献   

14.
Wang L  Li X  Chen S  Liu G 《Biotechnology letters》2009,31(2):313-319
Leymus chinensis is an important grassland perennial grass. However, its drought tolerance requires to be improved. LEA (late embryogenesis abundant) genes are believed to confer resistance to drought and water deficiency. Using Agrobacterium-mediated transformation, a wheat LEA gene, TaLEA 3 , was integrated into L. chinensis. The transgenic lines showed enhanced growth ability under drought stress during which transgenic lines had increased the relative water content, leaf water potential, relative average growth rate, but decreased the malondialdehyde content compared with the non-transgenic plant. Thus, transgenic breeding is an efficient approach to enhance drought tolerance in L. chinensis.  相似文献   

15.
P. Hadley  D. R. Causton 《Planta》1984,160(2):97-101
Changes in percentage organic carbon content were assessed during the first five weeks of growth of Uniculm barley (Hordeum vulgare) and Brussels sprouts (Brassica oleracea) plants grown in controlled-environment conditions at two constant temperatures, 16° and 22°C. Foliage (leaf laminae), stem, and root material was assayed in both species, together with leaf sheaths of barley and cotyledon laminae of Brussels sprouts. In barley, there was a decline in percentage organic carbon content with increasing foliage age in plants grown at 22°C, but in sheath material there was no significant change at either temperature. Root material showed a decline in percentage carbon content at both growth temperatures, whereas stems showed the opposite trend. Similar results were found in Brussels sprouts, with an overall decline in percentage carbon content in foliage at 22°C and a rise in stem material at both growth temperatures. However, roots showed no significant change in percentage carbon content over the experimental period. The results demonstrate that percentage organic carbon content may change during plant growth.  相似文献   

16.
Hydroponic experiments were carried out to study the role of alginate-derived oligosaccharides (ADO) in enhancing wheat (Triticum aestivum L.) tolerance to cadmium stress. Data were collected on plant biomass, chlorophyll content, photosynthetic rate, antioxidant enzyme activity and malondialdehyde (MDA) content. Under 100 μM Cd stress, plant growth was significantly inhibited. Shoot length, root length, fresh and dry weight were sharply reduced by 24.21, 34.59, 22.1 and 14.7%, respectively of the control after 10 day of Cd exposure. Superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities were increased and MDA content increased. Wheat seeds were soaked for 5 h in 1,000 mg L−1 ADO solution before cadmium stress. ADO pretreatment alleviated cadmium toxicity symptoms, which were reflected by increasing root and shoot lengths, fresh and dry weight, chlorophyll content and photosynthetic rate (P n ). Furthermore, ADO pretreatment significantly increased antioxidant enzyme (SOD, CAT and POD) activities and reduced MDA content in leaves and roots. The results indicated that ADO pretreatment partially protected the seedlings from cadmium toxicity during the following growth period.  相似文献   

17.
Dayan FE 《Planta》2006,224(2):339-346
Sorgoleone is the major component of the hydrophobic root exudate of sorghum [Sorghum bicolor (L.) Moench]. The presence of this allelochemical is intrinsically linked to root growth and the development of mature root hairs. However, factors modulating root formation and the biosynthesis of sorgoleone are not well known. Sorgoleone production was independent of early stages of plant development. The optimum temperature for root growth and sorgoleone production was 30°C. Seedling development and sorgoleone levels were greatly reduced at temperatures below 25°C and above 35°C. The level of sorgoleone was also sensitive to light, being reduced by nearly 50% upon exposure to blue light (470 nm) and by 23% with red light (670 nm). Applying mechanical pressure over developing seedlings stimulated root formation but did not affect the biosynthesis of this lipid benzoquinone. Sorgoleone production did not change in seedlings exposed to plant defense elicitors. On the other hand, sorgoleone levels increased in plants treated with a crude extract of velvetleaf (Abutilon theophrasti Medik.) root. This stimulation was not associated with increased osmotic stress, since decreases in water potential (Ψw) by increasing solute concentrations with sorbitol reduces sorgoleone production. Sorgoleone production appears to be constitutively expressed in young developing sorghum plants. Other than with temperature, changes in the environmental factors had either no effect or caused a reduction in sorgoleone levels. However, the stimulation observed with velvetleaf root crude extract suggests that sorghum seedlings may respond to the presence of other plants by releasing more of this allelochemical.  相似文献   

18.
Summary The objectives of this study were to compare thermotolerance in whole plants vs. suspension cell cultures of winter wheat, and to evaluate the synthesis of heat shock proteins in relation to genotypic differences in thermotolerance in suspension cells. Whole plant genetic differences in the development of heat tolerance were identified for three wheat genotypes (ND 7532, KS 75210 and TAM 101). Suspension cell cultures of these genotypes were used to evaluatein vitro response to heat stress. Viability tests by triphenyl tetrazolium chloride (TTC) and by fluorescein diacetate (FD) were utilized to determine the relationship of cellular response to heat stress (37°C/24 h, 50°C/1h). KS 75210 and ND 7532 are relatively heat susceptible. TAM 101 is heat tolerant. Both tests at the cellular level were similar to the whole plant response. Thus, cellular selection for enhancing heat tolerance seems feasible. Heat shock protein (HSP) synthesis of two genotypes, ND 7532 and TAM 101 were determined for suspension cultured cells. In suspension cultures, HSPs of molecular weight 16 and 17 kD were found to be synthesized at higher levels in the heat tolerant genotype (TAM 101) than the susceptible genotype (ND 7532), both at 34° and 37°C treatments for 2 hours and 5 hours. HSP 22 kD was synthesized more at 34°C for TAM 101 than ND 7532, but not at 37°C; whereas, HSP 33 kD was synthesized at 37°C at similar abundance for both genotypes, but not at 34°C.These results indicated that there is a differential expression of HSP genes in wheat suspension cells at different temperature stress durations and between heat tolerant and heat susceptible genotypes. It appears that the levels of synthesis of HSPs 16 and 17 kD are correlated with genotypic differences in thermal tolerance at the cellular level in two genotypes of wheat.  相似文献   

19.
Magid  Jakob  Luxhøi  Jesper  Lyshede  Ole B. 《Plant and Soil》2004,258(1):351-365
Carbon and nitrogen loss patterns from stems and leaves from Elephant grass (Miscanthus × ogiformis Honda cv. Giganteus), and five commonly used cover crop species: Hairy vetch (Vicia villosa Roth), Italian ryegrass (Lolium multiflorum L.), Crimson clover (Trifolium incarnatum L.), Rye (Secale cereale L.), and Radish (Raphanus sativus L.) were examined at 3 and 9 °C. The stratified incubation system allowed `dry' recovery of the decomposing plant residues with minimal soil contamination and without loss of soluble substances. The recovered materials were characterized biochemically and by light and scanning electron microscopy. When the data was analysed across all treatments and sampling dates, there was no significant effect of temperature on N loss, whereas C loss was significantly affected (P<0.0001) by temperature. Decomposition at 3 °C led to wider C-to-N ratios in the plant residues. At 3 °C there was no net immobilization of N, whereas at 9 °C net immobilization was strong in the L. multiflorum and M. × ogiformis treatments. The biochemical and microscopic evidence supports that microbial growth and macro-polymer utilization was reduced at 3 °C. It was apparent that the dicot materials leaked substantially more carbon during the early phase of decomposition, whereas in the monocot materials and especially in the M. × ogiformis treatment the microbial growth and substrate utilization must have been contained within the decomposing tissues. Based on this evidence, we propose that the decomposition of intracellular low molecular substances and proteins can be viewed as a process separate from the decomposition of macro-polymers in cell walls. At higher temperatures these processes coincide and thus the distinctiveness is blurred, whereas at low temperatures they may occur more separated in time as well as space due to leaking.  相似文献   

20.
Isolated microspores of Chinese cabbage (Brassica campestris ssp. pekinensis) were incubated in modified NN medium containing 10% sucrose in darkness at 33°C for one day followed by culture at 25°C. After 14 days of culture, microspores developed into embryos ranging from globular to cotyledonary stage. Plants were regenerated after transfer of embryos to medium containing 3% sucrose and no plant growth regulators.Abbreviations NN Nitsch and Nitsch - MS Murashige and Skoog - NAA naphthaleneacetic acid - BA 6-benzylaminopurine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号