首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Summary G- and R-banded chromosome preparations from eight of twelve 46,XX males, with no evidence of mosaicism or a free Y chromosome, were distinguished in blind trials from preparations from normal 46,XX females by virtue of heteromorphism of the short arm of one X chromosome. Photographic measurements on X chromosomes and on chromosome pair 7 in cells from twelve 46,XX males, eight 46,XX females, and four 46,XY males revealed a significant increase in the size of the p arm of one X chromosome in the group of XX males, independently characterised as being heteromorphic for Xp. No such differences were observed between X chromosomes of normal males and females or between homologues of chromosome pair 7 in all groups. The heteromorphism in XX males is a consequence of an alteration in shape (banding profile) and length of the tip of the short arm of one X chromosome, and the difference in size of the two Xp arms in these 46,XXp+ males ranged from 0.4% to 22.9%. From various considerations, including the demonstration of a Y-specific DNA fragment in DNA digests from nuclei of one of three XX males tested, it is concluded that the Xp+ chromosome is a product of Xp-Yp exchange. These exchanges are assumed to originate at meiosis in the male parent and may involve an exchange of different amounts of material. The consequences of such unequal exchange are considered in terms of the inheritance of genes located on Yp and distal Xp. No obvious phenotypic difference was associated with the presence or absence of Xp+. Thus, some males diagnosed as 46,XX are mosaic for a cryptic Y-containing cell line, and there is now excellent evidence that maleness in others may be a consequence of an autosomal recessive gene. The present data imply that in around 70% of 46,XX males, maleness is a consequence of the inheritance of a paternal X-Y interchange product.  相似文献   

2.
Yukifumi Nagai  Susumu Ohno 《Cell》1977,10(4):729-732
The XO sex chromosome constitution has been found in both sexes of the mole-vole (Ellobius lutescens) belonging to the rodent family Microtinae. This enigmatic species has apparently been enduring a 50% zygotic lethality. The current serological study revealed the presence in XO males and the absence from XO females of H-Y (histocompatibility Y) antigen. In all the mammalian species studied thus far, the expression of H-Y antigen strictly coincided with the presence of testicular tissue and not necessarily with the presence of the Y chromosome. The testis-organizing function of the H-Y gene appears to have been confirmed.In the mole-vole, X linkage of the testis-organizing H-Y gene is favored over its autosomal inheritance. Only X linkage of the H-Y gene creates a compelling evolutionary need to change the female sex chromosome constitution from XX to XO, and to abandon the dosage compensation by an X inactivation mechanism, so that the nonproductive XH-YX zygote can be eliminated as an embryonic lethal. With regard to the electrophoretic mobilities of three X-linked marker enzymes, however, a genetic difference between the male-specific XH-Y and the female-specific X was not detected. This might reflect a relatively recent speciation.  相似文献   

3.
H-Y antigen is a surface component associated with the heterogametic sex of various species and supposed to induce testicular differentiation. Genes controlling directly or not the expression of H-Y antigen and testicular differentiation have been localized on Y as well as on X chromosome and even autosomal chromosome. However the genetical localization of the H-Y structural gene remains unknown. We analysed the expression of H-Y antigen in three types of sexual dysgenesis (males bearing XX caryotype, testicular feminization syndrome and one case of hermaphroditism) to clarify the function and the genetics of this antigen.  相似文献   

4.
Accidental recombination between the differential segments of the X and Y chromosomes in man occasionally allows transfer of Y-linked sequences to the X chromosome leading to testis differentiation in so-called XX males. Loss of the same sequences by X-Y interchange allows female differentiation in a small proportion of individuals with XY gonadal dysgenesis. A candidate gene responsible for primary sex determination has recently been cloned from within this part of the Y chromosome by Page and his colleagues. The observation that a homologue of this gene is present on the short arm of the X chromosome and is subject to X-inactivation, raises the intriguing possibility that sex determination in man is a quantitative trait. Males have two active doses of the gonad determining gene, and females have one dose. This hypothesis has been tested in a series of XX males, XY females and XX true hermaphrodites by using a genomic probe, CMPXY1, obtained by probing a Y-specific DNA library with synthetic oligonucleotides based on the predicted amino-acid sequence of the sex-determining protein. The findings in most cases are consistent with the hypothesis of homologous gonad-determining genes, GDX and GDY, carried by the X and Y chromosomes respectively. It is postulated that in sporadic or familial XX true hermaphrodites one of the GDX loci escapes X-inactivation because of mutation or chromosomal rearrangement, resulting in mosaicism for testis and ovary-determining cell lines in somatic cells. Y-negative XX males belong to the same clinical spectrum as XX true hermaphrodites, and gonadal dysgenesis in some XY females may be due to sporadic or familial mutations of GDX.  相似文献   

5.
Steroid sulfatase gene in XX males.   总被引:2,自引:0,他引:2       下载免费PDF全文
The human X and Y chromosomes pair and recombine at their distal short arms during male meiosis. Recent studies indicate that the majority of XX males arise as a result of an aberrant exchange between X and Y chromosomes such that the testis-determining factor gene (TDF) is transferred from a Y chromatid to an X chromatid. It has been shown that X-specific loci such as that coding for the red cell surface antigen, Xg, are sometimes lost from the X chromosome in this aberrant exchange. The steroid sulfatase functional gene (STS) maps to the distal short arm of the X chromosome proximal to XG. We have asked whether STS is affected in the aberrant X-Y interchange leading to XX males. DNA extracted from fibroblasts of seven XX males known to contain Y-specific sequences in their genomic DNA was tested for dosage of the STS gene by using a specific genomic probe. Densitometry of the autoradiograms showed that these XX males have two copies of the STS gene, suggesting that the breakpoint on the X chromosome in the aberrant X-Y interchange is distal to STS. To obtain more definitive evidence, cell hybrids were derived from the fusion of mouse cells, deficient in hypoxanthine phosphoribosyltransferase, and fibroblasts of the seven XX males. The X chromosomes in these patients could be distinguished from each other when one of three X-linked restriction-fragment-length polymorphisms was used. Hybrid clones retaining a human X chromosome containing Y-specific sequences in the absence of the normal X chromosome could be identified in six of the seven cases of XX males.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Summary H-Y antigen was investigated in 18 specimens representing six different sex chromosome constitutions of the wood lemming (Myopus schisticolor). The control range of H-Y antigen was defined by the sex difference between normal XX females (H-Y negativeper definitionem) and normal XY males (H-Y positive, full titer). H-Y antigen titers of the X*Y and X*0 females were in the male control range, while in the X*X and X0 females the titers were intermediary. Data were obtained with two different H-Y antigen assays: the Raji cell cytotoxicity test and the peroxidase-antiperoxidase (PAP) method. Fibroblasts, gonadal cells, and spleen cells were checked. Presence of full titers of H-Y antigen in the absence of testis differentiation is readily explained by the assumption of a deficiency of the gonadspecific receptor of H-Y antigen. Since sex reversal is inherited as an X-linked trait, genes for this receptor are most likely X-linked. The implications of our findings are discussed in connection with earlier findings concerning H-Y antigen in XY gonadal dysgenesis in man and the X0 situation in man and mouse.  相似文献   

7.
Summary XX maleness is the most common condition in which testes develop in the absence of a cytogenetically detectable Y chromosome. Using molecular techniques, it is possible to detect Yp sequences in the majority of XX males. In this study, we could detect Y-specific sequences, including the sex-determining region of the Y chromosome (SRY), using fluorescence in situ hybridization. In 5 out of 6 previously unpublished XX males, SRY was translocated onto the terminal part of an X chromosome. This is the first report in which translocation of an SRY-bearing fragment to an X chromosome in XX males could be directly demonstrated.  相似文献   

8.
Summary H-Y antigen was determined in seven XO-, nine XO/XX patients, in one patient with i(Xq), and in one patient with a mosaic XO/XYqh-. It turned out that all patients are H-Y antigen positive, confirming the results of earlier investigations of H-Y antigen in patients with Turner's syndrome. The results in XO/XX mosaics clearly demonstrate that the XO-cell is H-Y antigen positive and support the view of a regulatory gene for H-Y antigen gene expression which is located on the X chromosome.  相似文献   

9.
The origin of 45,X males.   总被引:6,自引:2,他引:4       下载免费PDF全文
Maleness in association with the karyotype 45,X is a very rare and hitherto unexplained condition previously described in only four or five patients. This study was carried out to determine whether such males might actually possess Y-chromosomal material. Of the two 45,X males studied, one was found to be a low-grade mosaic with a 46,XY karyotype in less than 3% of fibroblasts; all lymphocytes karyotyped were 45,X. Fibroblast DNA from this individual was found to contain Y-specific repeated sequences in 1%-3% the amount observed in the father, consistent with mosaicism for a 46,XY cell line. No Y-specific repeated sequences were detected in the other patient, in whom all mitoses were 45,X. In neither patient were there detectable amounts of any of the single-copy Y-specific DNA sequences for which we tested. Studies of Xg blood groups and of X-linked restriction fragment length polymorphisms indicated that the single X chromosome was of maternal origin in both 45,X male probands. In contrast to the situation in XX males, we can exclude paternal X-Y interchange as the etiology in the cases described here. Our findings are compatible with mosaicism being the explanation of at least some "45,X" males.  相似文献   

10.
Karyotypically XY individuals of the C57BL/6J-YPOS mouse stock develop as females or hermaphrodites, but never as normal males. The aberrant sexual development results from the interaction of the C57BL/6J genetic background with the M. poschiavinus-derived Y chromosome. XY females from this stock were assayed for H-Y antigen. By the criteria of skin-grafting, the cell-mediated lympholysis test, and the popliteal lymph node assay, these XY females are antigenically indistinguishable from normal C57BL/6 males. Implications for the hypothesis that H-Y antigen induces formation of the mammalian testis are discussed.  相似文献   

11.
Recessive sex-determining genes in human XX male syndrome   总被引:7,自引:0,他引:7  
Maleness is normally inherited as a dominant trait (a single copy of the Y chromosome induces testicular differentiation of the embryonic gonad), but our genealogic study of three XX males in one pedigree indicated an autosomal recessive mode of male inheritance. Subsequent study revealed the presence of H-Y antigens in the three XX males and in their mothers, and suggested that excess H-Y may be found in the fathers. Inasmuch as H-Y loci have been mapped to the human Y chromosome, these data favor the view that H-Y structural loci comprise a family of testis-determining genes, and that Y autosome (or Y-X) translocation can generate either dominant or recessive modes of XX sex reversal, depending upon the particular portion of H-Y genes transferred.  相似文献   

12.
XO Turner women, irrespective of the parental source of the X chromosome, are of short stature, and this is now thought to be largely a consequence of haploinsufficiency for the pseudoautosomal region (PAR) gene SHOX. X(p)O mice (with a paternal X) are developmentally retarded in fetal life, are underweight at birth, and show reduced weight gain in the first few weeks after birth. X(m)O mice, on the other hand, are more developmentally advanced than their XX siblings in fetal life; their postnatal growth has not hitherto been assessed. Here we show that X(m)O mice are not underweight at birth, but they nevertheless show reduced weight gain postnatally. The fact that postnatal growth is affected in X(p)O and X(m)O mice, means that this must be due to X dosage deficiency. In order to see if haploinsufficiency for a PAR gene was responsible for this growth deficit (cf SHOX deficiency in Turner women), X(m)Y*(X) females, in which the Y*(X) chromosome provides a second copy of the PAR, were compared with XX females. These X(m)Y*(X) females were also growth-retarded relative to their XX sibs, suggesting that it may be haploinsufficiency for a non-dosage-compensated X gene or genes outside the PAR that is responsible for the postnatal growth deficit in XO mice. The X genes known to escape X inactivation in the mouse have closely similar Y homologues. X(m)YSRY-negative females were therefore compared with XX females to see if the presence of the SRY-negative Y chromosome corrected the growth deficit; this proved to be the case. The postnatal growth deficit of XO mice is therefore probably due to haploinsufficiency for a non-dosage-compensated X gene that has a Y homologue that provides an equivalent function in the somatic tissues of males.  相似文献   

13.
Summary Nine XX true hermaphrodites and two XX males were discovered in a family of American cocker spaniels. The true hermaphrodites were partially-masculinized females with ovotestes; the XX males had malformed male external genitalia and cryptorchid aspermatogenic testes. Wolffian and Mullerian duct derivatives were present in both true hermaphrodites and XX males. All four sires of sex-reversed dogs were normal XY males; five of the dams were anatomically normal females and one was an XX true hermaphrodite. A second true hermaphrodite reproduced as a female, producing anatomically normal offspring.All matings that produced sex-reversed offspring were consanguineous. Matings of the parents of sex-reversed cocker spaniels to normal beagles with no family history of intersexuality produced only normal offspring. Examination of G-banded karyotypes of the affected animals, their parents, and siblings, revealed no structural anomalies of the chromosomes that were consistently associated with sex-reversal.In assays for serologically-detectable H-Y antigen, the group of XX true hermaphrodites and the group of XX males had mean levels of the antigen not significantly different from that in normal male controls. Female parents of sex-reversed dogs and some of their female siblings were typed H-Y antigen positive, but the mean level of the antigen in this group was less than that of normal male controls.It is proposed that XX sex reversal in cocker spaniels is due to a mutant gene which when homozygous in females, results in a level of H-Y antigen similar to that found in normal males and the gonads develop as ovotestes or testes. When the gene is heterozygous in females, the level of serologically-detectable H-Y antigen is lowr than that found in normal males and the gonads develop as normal ovaries. The persistence of Mullerian structures in the presence of testicular tissue suggests that Mullerian inhibiting substance is deficient or ineffective in its action in this condition.Supported by NIH Postdoctoral Fellowship IF32 HL05515, University of Pennsylvania Genetics Center Grant, No. GM 20138, and NIH grants AI-19456, HD 17049, and HD 14357; and a grant from the Mrs. Cheever Porter Foundation.  相似文献   

14.
Summary H-Y antigen was studied serologically on blood cells and cultured fibroblasts of patients with numerical aberrations of the sex chromosomes. As compared with normal males, patients with the karyotypes 48,XXXY and 49,XXXXY have reduced H-Y antigen titrs; a tendency toward reduced titers can also be detected in the 47,XXY Klinefelter syndrome. The existence of an intermediary titer was further substantiated by a quantitative absorption test applied to cells with the 49,XXXXY karyotype. It appears that in the presence of one Y chromosome, the H-Y antigen titer decreases with an increasing number of X chromosomes. In contrast, the H-Y antigen titer is increased if, at a given number of X chromosomes, the number of Y chromosomes is increased, as in the 47,XYY male. Consequently, patients with 48,XXYY chromosomes are in the male control range. The findings are interpreted under the hypothesis of a controlling or modifying influence of the sex chromosomes on the titer of H-Y antigen.  相似文献   

15.
Summary The wood lemming, Myopus schisticolor, possesses a unique sex determining system comprising both XX and XY females. Normal female development in the presence of XY is guaranteed by a mutation on the X, apparently associated with a structural rearrangement in Xp. This mutation inactivates the testis-inducing and male-determining factor on the Y and distinguishes X* from X, and X*Y females from XY males. Normal fertility of X*Y females is ensured by a mitotic (double) nondisjunction mechanism which, at an early fetal stage, eliminates the Y from the germ line and replaces it by a copy of the X*.Numerical sex chromosome aberrations are not infrequent and the trisomics XXY and X*XY are relatively common. XXY individuals are sterile males with severe suppression of spermatogenesis. Among X*XY animals, both males and females, as well as a true lateral hermaphrodite have been observed. Primary deficiency of germ cells, impairment of spermatogenesis and sterility are characteristic traits of the X*XY males, whereas X*XY females have normal oogenesis and are fertile. Both these extremes (except female fertility) coexist in the true hermaphrodite described in the present study. These apparently contradictory observations are explainable under the assumption that X* and X in X*XY individuals are inactivated non-randomly or that the cells are distributed unequally. Inactivation of the X or X* determines whether or not the H-Y antigen will be expressed. When comparing conditions in Myopus and in man, an additional assumption has to be made in relation to the gene(s) involved in sex determination, located in Xp:In Myopus they do not escape inactivation, whereas in man they have been claimed to remain active.  相似文献   

16.
The genetically induced increase in the number of 18S + 28S ribosomal genes known as magnification has been reported to occur in male Drosophila but has not previously been observed in females. We now report that bobbed magnified (bbm) is recovered in progeny of female Drosophila carrying three different X bobbed (Xbb) chromosomes and the helper XYbb chromosome, which is a derivative of the Ybb- chromosome. Using different combinations of bb or bb+ X and Y chromosomes, we show that magnification in females requires both a deficiency in ribosomal genes and the presence of a Y chromosome: X/X females that are rDNA-deficient but do not carry a Y chromosome do not produce bbm; similarly, X/X/Y females that carry a Y chromosome but are not rDNA-deficient do not produce bbm. Bobbed magnified is only recovered from rDNA-deficient X/XY, X/X/Y or XX/Y females. We have also found that females carrying a ring Xbb chromosome together with the XYbb- chromosome do not produce bbm, indicating that ring X chromosomes are inhibited to magnify in females as in males. We postulate that the requirement for a Y chromosome is due to sequences on the Y chromosome that regulate or encode factor(s) required for magnification, or alternatively, affect pairing of the ribosomal genes.--These studies demonstrate that magnification is not limited to males but also occurs in females. Magnification in females is induced by rDNA-deficient conditions and the presence of a Y chromosome, and probably occurs by a mechanism similar to that in males.  相似文献   

17.
Both mouse and man have the common XX/XY sex chromosome mechanism. The X chromosome is of original size (5-6% of female haploid set) and the Y is one of the smallest chromosomes of the complement. But there are species, belonging to a variety of orders, with composite sex chromosomes and multiple sex chromosome systems: XX/XY1Y2 and X1X1X2X2/X1X2Y. The original X or the Y, respectively, have been translocated on to an autosome. The sex chromosomes of these species segregate regularly at meiosis; two kinds of sperm and one kind of egg are produced and the sex ratio is the normal 1:1. Individuals with deviating sex chromosome constitutions (XXY, XYY, XO or XXX) have been found in at least 16 mammalian species other than man. The phenotypic manifestations of these deviating constitutions are briefly discussed. In the dog, pig, goat and mouse exceptional XX males and in the horse XY females attract attention. Certain rodents have complicated mechanisms for sex determination: Ellobius lutescens and Tokudaia osimensis have XO males and females. Both sexes of Microtus oregoni are gonosomic mosaics (male OY/XY, female XX/XO). The wood lemming, Myopus schisticolor, the collared lemming, Dirostonyx torquatus, and perhaps also one or two species of the genus Akodon have XX and XY females and XY males. The XX, X*X and X*Y females of Myopus and Dicrostonyx are discussed in some detail. The wood lemming has proved to be a favourable natural model for studies in sex determination, because a large variety of sex chromosome aneuploids are born relatively frequently. The dosage model for sex determination is not supported by the wood lemming data. For male development, genes on both the X and the Y chromosomes are necessary.  相似文献   

18.
XX maleness is the most common condition in which testes develop in the absence of a cytogenetically detectable Y chromosome. Using fluorescence in situ hybridization (FISH) or PCR, it was possible to detect the transfer of Yp fragments including SRY gene to the terminal part of X chromosome in the majority of XX males. We report a 32-year-old-male in whom a seminal analysis showed azoospermia, an X chromatin analysis showed 44% of Barr body positive nuclei and a chromosomal analysis revealed a 46,XX karyotype. Physical examination showed a normal sexual development and bilateral small testes. Hormonal studies revealed hypergonadotropic hypogonadism. Testis histological examination showed a profile of Sertoli Only Cell Syndrome. FISH study ruled out the presence of a Y-bearing cell line, and confirmed translocation of SRY to Xp terminal part. In order to confirm that the complete masculinized phenotype was related to a preferential inactivation of the no rearranged X chromosome, X-chromosome inactivation patterns (XCIP) were studied by analysis of methylation status of the androgen receptor gene. Highly skewed XCIP was observed by greater than 90% preferential inactivation involving one of the two X chromosomes, suggesting that the SRY-bearing X chromosome was the preferentially active X allowing for sufficient SRY expression for complete masculinization.  相似文献   

19.
To determine if human XX maleness results from an abnormal chromosomal X-Y interchange, we studied the inheritance of the paternal pseudoautosomal region in nine patients. Those six patients in whom Y-specific DNA was found (Y(+)) inherited the entire pseudoautosomal region from the paternal Y chromosome and lost that of the paternal X chromosome. Moreover, in three Y(+) cases, we observed the deletion of a paternal Xp locus tightly linked to the pseudoautosomal region. These results definitively show that an abnormal and terminal X-Y interchange during paternal meiosis causes Y(+)XX maleness. In contrast, no abnormal X-Y interchange was observed in any of the three Y(-) cases analyzed, suggesting that maleness can occur in the absence of any Y-specific DNA.  相似文献   

20.
X inactivation is a fundamental mechanism in eutherian mammals to restore a balance of X-linked gene products between XY males and XX females. However, it has never been extensively studied in a eutherian species with a sex determination system that deviates from the ubiquitous XX/XY. In this study, we explore the X inactivation process in the African pygmy mouse Mus minutoides, that harbours a polygenic sex determination with three sex chromosomes: Y, X, and a feminizing mutant X, named X*; females can thus be XX, XX*, or X*Y, and all males are XY. Using immunofluorescence, we investigated histone modification patterns between the two X chromosome types. We found that the X and X* chromosomes are randomly inactivated in XX* females, while no histone modifications were detected in X*Y females. Furthermore, in M. minutoides, X and X* chromosomes are fused to different autosomes, and we were able to show that the X inactivation never spreads into the autosomal segments. Evaluation of X inactivation by immunofluorescence is an excellent quantitative procedure, but it is only applicable when there is a structural difference between the two chromosomes that allows them to be distinguished.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号