首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is a complex system of 2- to 5-nm filaments in the oral apparatus of Tetrahymena. Four major subunit proteins, called tetrins, have been isolated from the filaments. These proteins, showing apparent molecular weights in polyacrylamide gels of 79-89 kDa, will assemble in vitro into 2- to 5-nm filaments. Tetrin filaments in vivo show different packing arrangements in different regions of the oral apparatus. We sought to determine the distributions of tetrin polypeptides within the complex oral structure by obtaining monoclonal antibodies specific for individual tetrins, then mapping their distributions within the oral apparatus using standard fluorescence microscopy, confocal laser scanning fluorescence microscopy, and electron microscopy. The results indicate that the four tetrin polypeptides are colocalized everywhere within the oral apparatus of Tetrahymena. Tetrin-binding proteins or specific nucleating structures may need to be invoked to explain the complex organization of the tetrin network. The 16 monoclonal antibodies obtained were also used to search for evidence of immunological relationships between tetrin and cytoskeletal proteins in multicellular organisms. None was found.  相似文献   

2.
Brimmer A  Weber K 《Protist》2000,151(2):171-180
The oral filaments of the ciliate Tetrahymena consist of the tetrins, insoluble polypeptides with molecular masses of around 85 kD. We characterised the tetrins of T. thermophila by two-dimensional gels and derived a large number of peptide sequences by in gel digestion. Using RT-PCR techniques and RACE-PCR, the complete cDNA sequences of tetrins A, B and C were established. Although tetrins differ strikingly in protein sequence they show a common structural principle. A N-terminal domain of 60 to 100 residues contains most of the proline residues of the tetrins and is probably globular. It is followed by a long alpha-helical domain of 620 to 640 residues which either lacks prolines or in tetrin A contains a single proline residue. Although this long domain has coiled coil forming ability, the individual heptad repeats are not extensive. Tetrins are novel cytoskeletal proteins unique to ciliates. Since the three tetrin sequences account for all 900 amino acid residues obtained by microsequencing of peptides, an additional major tetrin seems excluded. A minor component D is related to tetrin B by peptide sequences. The isoelectric variants, particularly obvious for tetrin A, most likely reflect post-translational modifications. These could arise by phosphorylation of serines and threonines in the proline rich N-terminal domain.  相似文献   

3.
In Paramecium, several kinds of the oral networks of fine filaments are defined at the ultrastructural level. Using the sodium chloride-treated oral apparatus of Paramecium as an antigen to produce monoclonal antibodies, we have begun to identify the proteins constituting these networks. Immunoblotting showed that all positive antibodies were directed against three bands (70-, 75-and 83-kD), which corresponded to quantitatively minor components of the antigen; there was no antibody specific for the quantitatively major components (58- and 62-kD). Immunolocalization with four of these antibodies directed against one or several of these three bands showed that these proteins are components of the fine filaments supporting the oral area; a decoration of the basal bodies and the outer lattice was also observed on the cortex. Immunofluorescence on interphase cells suggested that the three proteins colocalized on the left side of the oral apparatus, whereas only the 70-kD band was detected on the right side. During division, the antigens of the antibodies were detected at different stages after oral basal body assembly. The antibodies cross-reacted with the tetrins, which are oral filament-forming proteins in Tetrahymena, demonstrating that tetrin-related proteins are quantitatively minor components of the oral and the somatic cytoskeleton of Paramecium.  相似文献   

4.
ABSTRACT. Filaments in the oral apparatus of Tetrahymena appear similar, but not identical, to the intermediate filaments of multicellular organisms. The mean diameter of filaments measured in the present study was 16.4 nm, but the range of variation was much greater than has been reported for intermediate filaments. The organization of filaments within the oral apparatus has been studied by indirect immunofluorescence microscopy and immunogold localization at the electron microscopical level using antiserum raised in rabbits against the major subunit protein of the oral filaments (87K). The filaments were found to be organized into cables, networks, and chambers or cages which encase the basal bodies. At the highest level of organization, the filaments connect into a rigid framework capable of maintaining the overall architecture in the absence of microtubules. Like intermediate filaments, the oral filaments are insoluble at high ionic strength, have evolutionarily non-conservative subunit proteins, are probably non-contractile, and serve to stabilize persistent cellular architecture.  相似文献   

5.
Several proteins, including microtubule proteins, have been isolated from the oral apparatus of the ciliate Tetrahymena. The synthesis of these proteins has been studied in relation to formation of this organelle system by the cell. Electron microscopy has shown that the isolated oral apparatus consists primarily of basal bodies, pellicular membranes, and a system of subpellicular microtubules and filaments. Cilia were removed during the isolation; therefore none of the proteins studied was from these structures. Evidence was obtained from the study of total oral apparatus protein which indicates that at least some of the proteins involved in formation of this organelle system may be synthesized and stored in the cytoplasm for use over long periods. This pattern of regulation was found for three individual proteins isolated from the oral apparatus fraction after extraction with a phenol-acetic acid solvent. A different pattern of regulation was found for microtubule proteins isolated from the oral apparatus of Tetrahymena. The data suggest that microtubule proteins, at least in logarithmically growing cells, are not stored in a cytoplasmic pool but are synthesized in the same cell cycle in which they are assembled into oral structures.  相似文献   

6.
A new fiber-forming protein from Tetrahymena pyriformis   总被引:1,自引:0,他引:1  
A new fiber-forming protein was isolated from the acetone powder of Tetrahymena pyriformis by co-precipitating with skeletal muscle myosin while trials were made to find actin or actin-like protein in Tetrahymena. It has a molecular weight of 38000 D and forms a tetramer (140000 D, 9 S) in physiological conditions. Its isoelectric point (pH 6.7), amino acid composition and antigenic determinant(s) differ significantly from those of non-muscle actin and skeletal muscle actin. It does not undergo G-F conversion while actin does, and does not activate Mg2+-ATPase of skeletal muscle myosin. The protein localizes in the oral apparatus and division furrow as revealed by fluorescent antibody method. The protein can be assembled into 14-nm filaments in a reassembly buffer. The in vitro filaments appear to correspond to some filaments included in the oral apparatus and the contractile ring. The fiber-forming protein from Tetrahymena may play important roles in cell motility including cell division.  相似文献   

7.
The presence and distribution of intermediate filament proteins in mouse oocytes and preimplantation embryos was studied. In immunoblotting analysis of electrophoretically separated polypeptides, a distinct doublet of polypeptides with Mr of 54K and 57K, reactive with cytokeratin antibodies, was detected in oocytes and in cleavage-stage embryos. A similar doublet of polypeptides, reactive with cytokeratin antibodies, was also detected in late morula-and blastocyst-stage embryos, and in a mouse embryo epithelial cell line (MMC-E). A third polypeptide with Mr of 50K, present in oocytes only as a minor component, was additionally detected in the blastocyst-stage embryos. No cytokeratin polypeptides could be detected in granulosa cells. Immunoblotting with vimentin antibodies gave negative results in both cleavage-stage and blastocyst-stage embryos. In electron microscopy, scattered filaments, 10-11 nm in diameter, were seen in detergent-extracted cleavage-stage embryos. Abundant 10-nm filaments were present in the blastocyst outgrowth cells. In indirect immunofluorescence microscopy (IIF) of oocytes and cleavage-stage embryos, diffuse cytoplasmic staining was seen with antibodies to cytokeratin polypeptides but not with antibodies to vimentin, glial fibrillary acidic protein, or neurofilament protein. Similarly, the inner cell mass (ICM) cells in blastocyst outgrowths showed diffuse cytokeratin-specific fluorescence. We could not detect any significant fibrillar staining in cleavage-stage cells or ICM cells by the IIF method. The first outgrowing trophectoderm cells already had a strong fibrillar cytokeratin organization. These immunoblotting and -fluorescence results suggest that cytokeratin-like polypeptides are present in mouse oocytes and preimplantation-stage embryos, and the electron microscopy observations show that these early stages also contain detergent-resistant 10- to 11-nm filaments. The relative scarcity of these filaments, as compared to the high intensity in the immunoblotting and immunofluorescence stainings, speaks in favor of a nonfilamentous pool of cytokeratin in oocytes and cleavage-stage embryos.  相似文献   

8.
Four monoclonal antibodies were raised against polypeptides present in a high-salt detergent-insoluble fraction from cells of Chlamydomonas reinhardtii. Indirect immunofluorescence microscopy of fibroblasts and epithelial cells grown in culture using these plant antibodies revealed staining arrays identical to those obtained with well characterised antibodies to animal intermediate filaments. Immunofluorescence microscopy of Chlamydomonas with these monoclonal antibodies and a monoclonal antibody that recognises all animal intermediate filaments (anti-IFA) gave a diffuse, patchy cytoplasmic staining pattern. Both the plant antibodies and anti-IFA stained interphase onion root tip cells in a diffuse perinuclear pattern. In metaphase through to telophase, the labelling patterns colocalised with those of microtubules. Labelling of the phragmoplast was also detected but not staining of the preprophase band. On Western blots of various animal cell lines and tissues, all the antibodies labelled known intermediate filament proteins. On Western blots of whole Chlamydomonas proteins, all the antibodies labelled a broad band in the 57,000 Mr range, and three antibodies labelled bands around 66,000 and 140,000 Mr but with variable intensities. On Western blots of whole onion root tip proteins, all the antibodies labelled 50,000 Mr (two to three bands) polypeptides and a diffuse band around 60,000 Mr and three of the antibodies also labelled several polypeptides in the 90,000-200,000 Mr range. The consistent labelling of these different bands by several different monoclonal antibodies recognising animal intermediate filaments makes these polypeptides putative plant intermediate filament proteins.  相似文献   

9.
SYNOPSIS. Pellicles of the ciliate Tetrahymena pyriformis strain GL (phenoset A) were isolated by a new procedure. Oral apparatuses were also purified by a modification of a previous method. Both preparations were characterized by electron microscopy. Proteins of the isolates were separated by analytical SDS polyacrylamide gel electrophoresis. The isolated pellicles, which included oral apparatuses, contained only 6 major proteins (gel bands), designated A through F. Bands A, B, and C, were found in the pellicle fraction, but not in the oral apparatus fraction. Therefore, these proteins are believed to be present in the somatic cortex of Tetrahymena. Bands D and E were greatly enriched in the oral apparatus fraction; these proteins are therefore believed to be present primarily in the oral apparatus. Band F, identified as tubulin, was present in both preparations. Molecular weight determinations and some selective solubilization experiments are also presented.  相似文献   

10.
Filaments and fibrils that exhibit a 100-nm axial periodicity and occur in the medium and in the deposited extracellular matrix of chicken embryo and human fibroblast cultures have been tentatively identified with type VI collagen on the basis of their similar structural characteristics (Bruns, R. R., 1984, J. Ultrastruct. Res., 89:136-145). Using indirect immunoelectron microscopy and specific monoclonal and polyclonal antibodies, we now report their positive identification with collagen VI and their distribution in fibroblast cultures and in tendon. Primary human foreskin fibroblast cultures, labeled with anti-type VI antibody and studied by fluorescence microscopy, showed a progressive increase in labeling and changes in distribution with time up to 8 d in culture. With immunoelectron microscopy and monoclonal antibodies to human type VI collagen followed by goat anti-mouse IgG coupled to colloidal gold, they showed in thin sections specific 100-nm periodic labeling on extracellular filaments and fibrils: one monoclonal antibody (3C4) attached to the band region and another (4B10) to the interband region of the filaments and fibrils. Rabbit antiserum to type VI collagen also localized on the band region, but the staining was less well defined. Control experiments with antibodies to fibronectin and to procollagen types I and III labeled other filaments and fibrils, but not those with a 100-nm period. Heavy metal-stained fibrils with the same periodic and structural characteristics also have been found in both adult rat tail tendon and embryonic chicken tendon subjected to prolonged incubation in culture medium or treatment with adenosine 5'-triphosphate at pH 4.6. We conclude that the 100-nm periodic filaments and fibrils represent the native aggregate form of type VI collagen. It is likely that banded fibrils of the same periodicity and appearance, reported by many observers over the years in a wide range of normal and pathological tissues, are at least in part, type VI collagen.  相似文献   

11.
《Experimental mycology》1990,14(4):360-371
P59Nc, the constitutive polypeptide of 8- to 10-nm filaments in N. crassa, was purified almost to homogeneity using a new and more rapid procedure which involves differential centrifugation and assembly-disassembly of P59Nc supramolecular structures. Rabbit anti-P59Nc antibodies were purified by affinity chromatography on P59Nc-agarose. Using these antibodies and immunocytochemical techniques, we have studied the subcellular topography of P59Nc and 8- to 10-nm filaments in mature hyphae of N. crassa. Immunofluorescence staining was performed on mycelia after partial digestion of the cell wall, while ultrastructural images were obtained by colloidal-gold decoration and electron microscopy of N. crassa sections. The 8- to 10-nm filaments were distributed at random in the cytoplasm of each cell and along young and old zones of the hyphae. In some cases filaments were associated with septa. The fluorescence staining pattern and the colloidal-gold distribution indicate the presence of P59Nc in the assembled as well as in the nonassembled states. Bundles of filaments in N. crassa nuclei were often observed under the electron microscope. It is suggested that P59Nc and the 8- to 10-nm cytoplasmic filaments are constituents of the cellular matrix of N. crassa.  相似文献   

12.
Cells were microinjected with four mouse monoclonal antibodies that were directed against either alpha- or beta-tubulin subunits, one monoclonal with activity against both subunits, and a guinea pig polyclonal antibody with activity directed against both subunits, to determine the effects on the distribution of cytoplasmic microtubules and 10-nm filaments. The specificities of the antibodies were confirmed by Western blots, solid phase radioimmunoassay, and Western blot analysis of alpha- and beta-tubulin peptide maps. Two monoclonals DM1A and DM3B3, an anti-alpha- and anti-beta-tubulin respectively, and the guinea pig polyclonal anti-alpha/beta-tubulin antibody (GP1T4) caused the 10-nm filaments to collapse into large lateral aggregates collecting in the cell periphery or tight juxtanuclear caps; the other monoclonal antibodies had no effect when microinjected into cells. The filament collapsing was observed to be complete at 1.5-2 h after injection. During the first 30 min after injection a few cytoplasmic microtubules near the cell periphery could be observed by fluorescence microscopy. This observation was confirmed by electron microscopy, which also demonstrated assembled microtubules in the juxtanuclear region. By 1.5 h, when most of the 10-nm filaments were collapsed, the complete cytoplasmic array of microtubules was observed. Cells injected in prophase were able to assemble a mitotic spindle, suggesting that the antibody did not block microtubule assembly. Metabolic labeling with [35S]methionine of microinjected cells revealed that total protein synthesis was the same as that observed in uninjected cells. This indicated that the microinjected antibody apparently did not produce deleterious effects on cellular metabolism. These results suggest that through a direct interaction of antibodies with either alpha- or beta- tubulin subunits, 10-nm filaments were dissociated from their normal distribution. It is possible that the antibodies disrupted postulated 10-nm filament-microtubule interactions.  相似文献   

13.
ABSTRACT. Extraction of the ciliated protozoon Tetrahymena with nonionic detergents produces a surface-related cytoskeleton that consists of a basic lamina of whole-cell dimensions together with associated microtubule and microfilament systems, including all ciliary basal bodies. The organization of the isolated cytoskeleton has been studied using scanning electron microscopy, and several new features are described in the oral region. Here the ciliary basal bodies are arranged in a very stable and highly complex pattern. This pattern was found to be identical in the four species of Tetrahymena we examined. In addition, various microtubular bundles and two separate systems of filaments were observed in scanning electron micrographs of isolated oral skeletons. The appearance of the deep fiber bundle in preparations of this type suggests that it arises, at least in part, as an extension of the ribbed wall microtubules. On the basis of its distribution within the oral skeleton, one of the filament systems described is suggested to be a contractile system responsible for pinching off food vacuoles.  相似文献   

14.
The ciliate Tetrahymena thermophila possesses a multitude of cytoskeletal structures whose differentiation is related to the basal bodies the main mediators of the cortical pattern. This investigation deals with immunolocalization using light and electron microscopy of filaments labeled by the monoclonal antibody 12G9, which in other ciliates identifies filaments involved in transmission of cellular polarities and marks cell meridians with the highest morphogenetic potential. In Tetrahymena interphase cells, mAb 12G9 localizes to the sites of basal bodies and to the striated ciliary rootlets, to the apical band of filaments and to the fine fibrillar oral crescent. We followed the sequence of development of these structures during divisional morphogenesis. The labeling of the maternal oral crescent disappears in pre-metaphase cells and reappears during anaphase, concomitantly with differentiation of the new structure in the posterior daughter cell. In the posterior daughter cell, the new apical band originates as small clusters of filaments located at the base of the anterior basal bodies of the apical basal body couplets during early anaphase. The differentiation of the band is completed in the final stages of cytokinesis and in the young post-dividing cell. The maternal band is reorganized earlier, simultaneously with the oral structure.The mAb 12G9 identifies two transient structures present only in dividing cells. One is a medial structure demarcating the two daughter cells during metaphase and anaphase, and defining the new anterior border of the posterior daughter cell. The other is a post-oral meridional filament marking the stomatogenic meridian in postmetaphase cells. Comparative analysis of immunolocalization of transient filaments labeled with mAb12G9 in Tetrahymena and other ciliates indicates that this antibody identifies a protein bound to filamentous structures, which might play a role in relying polarities of cortical domains and could be a part of a mechanism which governs the positioning of cortical organelles in ciliates.  相似文献   

15.
The expression and intracellular localization of the Tetrahymena homolog of 4-hydroxyphenylpyruvate dioxygenase (HPPD) were investigated in wild-type Tetrahymena thermophila strain B1868 VII and the mutant strains IIG8, defective in food vacuole formation, MS-1, blocked in secretion of lysosomal enzymes, and SB 281, defective in mucocyst maturation. Immunoelectron microscopy and confocal laser scanning microscopy demonstrated that Tetrahymena HPPD primarily localized to membranes of the endoplasmic reticulum. In addition, Tetrahymena HPPD was detected in association with membranes of the Golgi apparatus, and transport vesicles in exponentially growing wild-type and mutant strains. In starved cells, Tetrahymena HPPD localized exclusively to membranes of small vesicles. Since no de novo synthesis ofTetrahymena HPPD takes place in cells starved for more than 30min, these results suggest that there is a flow ofTetrahymena HPPD from the endoplasmic reticulum to small vesicles, possibly via the Golgi apparatus, and thatTetrahymena HPPD contains a signal for vesicle membrane retrieval or retention.  相似文献   

16.
The presence of phosphorylated proteins associated with microtubule organizing centers in tissue culture cells during mitosis has been demonstrated by the use of monoclonal antibodies raised against mitotic HeLa cells [Vandre et al., Proc. Natl. Acad. Sci. U.S.A. 81:4439-4443, 1984]. We report here that in Paramecium two of the mitosis specific antibodies, MPM-1 and MPM-2, decorate throughout the cell cycle all the microtubule organizing centers (MTOCs) located in the cortex and in the oral apparatus (gullet). Immuno-electron microscopy showed that these antibodies labeled the electron-dense material surrounding basal bodies from which several microtubule networks as well as kinetodesmal fibers originate. During mitosis, these antibodies also stained other cortical cytoskeletal structures, the kinetodesmal fibers (MPM-1 and MPM-2) and the epiplasm (MPM-1). Among the different polypeptides recognized by the antibodies on immunoblots, three major ones of 60, 63, and 116 kDa were found to be common to the cortex (where several thousand ciliary basal bodies are anchored) and the oral apparatus (which comprises several hundred basal bodies around which various arrays of cytoplasmic microtubules are organized). Alkaline phosphatase treatment abolished the immunoreactivity of the polypeptides and the labeling observed by immunofluorescence. These results demonstrate that phosphorylated proteins are associated with all the known active microtubule organizing centers present in the cortex throughout the cell cycle of Paramecium. Furthermore they indicate that in Paramecium phosphorylation of proteins could also be involved in the cell cycle dependent dynamics of cortical cytoskeletal structures other than microtubules.  相似文献   

17.
The distributions of desmin and vimentin intermediate filaments in cultured hamster heart cells were examined by immunofluorescent microscopy and an immunogold deep-etching replica technique in combination with electron microscopy. Fluorescent studies showed the overall staining patterns of the myocytes as well as the fibroblasts. Monoclonal antibodies (Da, D3) to desmin showed punctate staining for the myocytes, while polyclonal desmin (pD) stained in a filamentous pattern. Fibroblasts stained strongly with monoclonal anti-vimentin (Va), but did not stain with the desmin probes. Deep-etched immunogold studies confirmed at the ultrastructural level that monoclonal anti-desmin antibodies stain individual intermediate filaments in an intermittent pattern. Monoclonal (D3) antibody stained the intermediate filaments heavily and continuously at the cell peripheries, while it stained intermittently in the cell body, similar to the Da monoclonal. Monoclonal anti-vimentin stained only intermediate filaments in fibroblasts. Our studies show a heterogeneity of staining within the cultured heart cells when various anti-desmin and anti-vimentin antibodies are used.  相似文献   

18.
Amnionic ectoderm of 6.8-day chicken embryos was associated with 6.8-day dorsal dermis or 13–15-day scale dermis and cultured on host chorio-allantoic membrane for 8 days. The amnionic ectoderm, recombined and cultured with the dorsal dermis, developed feather filaments consisted of a feather root, a horny sheath, and barb ridges. With several feather keratin-specific monoclonal antibodies (4E12 and 1F3), these structures in the induced feather filaments were shown to express feather-specific keratin antigens. The amnionic ectoderm, recombined and cultured with the shank dermis, became stratified squamous and developed scales. The scales were keratinized and their surface reacted only weakly with the monoclonal antibodies specific for the feather keratins. However, 1F3 reacted with two polypeptides in the cytoskeletal fraction of the scales, but not of the feather filaments. The results confirm our previous findings from in vitro experiments with the proamnionic ectoderm (Mizuno, 1970, 1972).  相似文献   

19.
Blumenthal SS  Clark GB  Roux SJ 《Planta》2004,218(6):965-975
In immunoblot assays, at least three putative nuclear intermediate filament (NIF) proteins were detected in nuclear envelope-matrix (NEM) and lamin (L1) fractions of nuclei from plumules of dark-grown pea (Pisum sativum L.) seedlings. These NIF proteins had apparent molecular masses of ca. 65, 60, and 54 kDa (also referred to as p65, p60, and p54), and appeared as multiple isoelectric forms, with pIs ranging from ca. 4.8 to 6.0. Polyclonal and monoclonal antibodies were raised to the 65-kDa NIF protein bands excised from gels after electrophoresis. These anti-pea antibodies were specifically cross-reactive with the pea nuclear p65, p60, and p54 proteins and also with chicken lamins. Sequence alignment of peptide fragments obtained from the 65- and 60-kDa pea NIF proteins showed similarity with animal intermediate filament proteins such as lamins and keratins and with certain plant proteins predicted to have long coiled-coil domains. These pea NIF proteins were further purified and enriched from the NEM fraction using methods similar to those used for isolating animal lamins. When negatively stained and viewed by transmission electron microscopy, the filaments in the pea lamin (L1) fraction appeared to be 6–12 nm in diameter. As assayed by immunofluorescence cytochemistry using a confocal laser-scanning microscope, fixed pea plumule cells displayed uniform as opposed to peripheral nuclear staining by several of the antibody preparations, both polyclonal and monoclonal. This report describes the biochemical and immunological properties of these pea NIF proteins.Abbreviations IF Intermediate filament - L Lamin fraction - LM Lamina-matrix fraction - MAb JLA20 Anti-chicken actin monoclonal antibody - MAb LN43 Anti-human lamin B2 monoclonal antibody - MAb PL19 Anti-pea lamin #19 monoclonal antibody - MAb TIB 131 Anti-intermediate filament monoclonal antibody - N Nuclei fraction - NEM Nuclear envelope-matrix fraction - NIF Nuclear intermediate filament - PAb PL3 Anti-pea lamin #3 polyclonal antibody  相似文献   

20.
Neurofilaments (NFs) have not been observed in crustaceans using conventional electron microscopy, and intermediate filaments have never been described in crustaceans and other arthropods by immunocytochemistry. Since polypeptides, labeled by the NN18-clone antibody, were revealed on microtubule side-arms of crayfish, we have tested, in this study, whether proteins similar to mammalian NFs are present in the protocerebral tract (PCT) of the crab Ucides cordatus. We used immunohistochemistry for light microscopy with monoclonal antibodies against three different NF subunits, high (NF-H), medium (NF-M), and light (NF-L). Labeling was observed with the NN18-clone, which recognizes NF-M. In order to confirm the results obtained with the immunohistochemical reactions, Western blotting, using the three primary antibodies, was performed and the presence of NF-M was confirmed. The NN18-clone monoclonal antibody recognized a protein of 160 kDa, similar to the mammaliam NF-M protein, but NF-L and NF-H were not recognized. Conventional transmission electron microscopy was used to observe the ultrastructural components of the axons and immunoelectron microscopy was used to show the distribution of the NF-M-like polypeptides along cytoskeletal elements of the PCT. Our results agree with previous studies on crustacean NF proteins that have reported negative immunoreactions against NF-H and NF-L subunits and positive immunoreactions against the mammalian NF-M subunit. However, the protein previously referred to as P600 and recognized by the NN18-clone, has a very high molecular weight, thus, being different from mammalian NF-M subunit and from the protein revealed now in our study.This work was supported by CNPq, FAPERJ, CAPES and FUJB/UFRJ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号