首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Components of the DNA damage checkpoint are essential for surviving exposure to DNA damaging agents. Checkpoint activation leads to cell cycle arrest, DNA repair, and apoptosis in eukaryotes. Cell cycle regulation and DNA repair appear essential for unicellular systems to survive DNA damage. The relative importance of these responses and apoptosis for surviving DNA damage in multicellular organisms remains unclear. RESULTS: After exposure to ionizing radiation, wild-type Drosophila larvae regulate the cell cycle and repair DNA; grp (DmChk1) mutants cannot regulate the cell cycle but repair DNA; okra (DmRAD54) mutants regulate the cell cycle but are deficient in repair of double strand breaks (DSB); mei-41 (DmATR) mutants cannot regulate the cell cycle and are deficient in DSB repair. All undergo radiation-induced apoptosis. p53 mutants regulate the cell cycle but fail to undergo apoptosis. Of these, mutants deficient in DNA repair, mei-41 and okra, show progressive degeneration of imaginal discs and die as pupae, while other genotypes survive to adulthood after irradiation. Survival is accompanied by compensatory growth of imaginal discs via increased nutritional uptake and cell proliferation, presumably to replace dead cells. CONCLUSIONS: DNA repair is essential for surviving radiation as expected; surprisingly, cell cycle regulation and p53-dependent cell death are not. We propose that processes resembling regeneration of discs act to maintain tissues and ultimately determine survival after irradiation, thus distinguishing requirements between muticellular and unicellular eukaryotes.  相似文献   

2.
W Ferro 《Mutation research》1983,107(1):79-92
Muller-5 males were irradiated with X-rays in nitrogen, in air or in oxygen (followed by nitrogen or oxygen post-treatments in the nitrogen and oxygen series) and were mated to females of a repair-proficient strain (mei+) or to those of a strain known to be deficient in excision repair of UV damage (in somatic cells). The latter strain, designated as mei-9a, is also known to be sensitive, in the larval stages, to the killing effects of UV, X-rays and to a number of chemical mutagens. The frequencies of sex-linked recessive lethals and autosomal translocations induced in the spermatozoa of males were determined and compared. The frequencies of sex-linked recessive lethals in the mei-9 control groups were consistently higher than in the mei+ groups. Irradiation in air or in nitrogen led to significantly higher yields of recessive lethals when the irradiated males were mated to mei-9 females, whereas, after irradiation in oxygen, the yields were similar with both kinds of female. No significant differences in the frequencies of reciprocal translocations were observed between the mei+ and mei-9 groups after irradiation of the males in nitrogen, in air or in oxygen. Likewise, no differential effects of the contrasting post-treatments (nitrogen versus oxygen), either for recessive lethals or for translocations, could be discerned. These results are considered to support the notion that the kinds of genetic damage induced in mature spermatozoa in air or in nitrogen are qualitatively similar (at least with respect to the component(s) that lead to the production of recessive lethal mutations), but clearly different when induced in an oxygen atmosphere. The enhanced yields of recessive lethals with mei-9 females (after irradiation of the males either in air or in nitrogen) has been interpreted on the assumption that the mei-9 mutant is also deficient for the repair of X-ray-induced, recessive lethal-generating premutational lesions. Possible reasons for the lack of differences between the mei+ and mei-9 groups with respect to translocation yields and for the absence of measurable differences in response between the contrasting post-treatments (after irradiation of the males in nitrogen) are discussed.  相似文献   

3.
W Ferro 《Mutation research》1985,149(3):399-408
We investigated larval sensitivity to UV and repair of UV- and X-ray-induced lesions in the DNA of the ebony strain compared to a wild-type strain (Canton S). The ebony strain was previously characterized as being more sensitive to UV-induced killing of embryos than Canton S. Also the ebony strain is more sensitive to X-rays for induction of larval killing, dominant lethals and recessive lethals. In this paper it is demonstrated that (1) ebony larvae are more sensitive to killing by UV and less proficient in photoreactivation (PR) ability than Canton S larvae; (2) the ebony strain has a defect in PR repair of endonuclease-sensitive sites induced in the DNA of primary cell cultures by UV irradiation; (3) the ebony strain has a defect in the repair of single-strand breaks induced in the DNA by X-rays (again in primary cell cultures), at least early on in the repair incubation. A rough localization of the UV sensitivity and the PR ability is presented and the possible relevance of the biochemical to the genetic results is discussed.  相似文献   

4.
5 mutagen-sensitive mutants of Drosophila melanogaster, reported to perform normal or only slightly reduced excision repair of UV damage, were examined by an unscheduled DNA synthesis (UDS) assay. This assay measures the ability of cultured primary cells, derived from each mutant, to perform the resynthesis step in the excision repair pathway, following damage to cellular DNA by direct-acting alkylating agents, UV or X-irradiation. 2 mutants, classified as completely or partially proficient for both excision and postreplication repair of UV damage, mus(1)103 and mus(2)205, were found to give positive UDS responses only for UV damage. These mutants exhibit no measurable UDS activity following DNA damage by several different alkylating agents and X-rays. 3 mutants, classified as having no defect in excision repair, but measurable defects in postreplication repair of UV damage, mei-41, mus(1)101, and mus(3)310 exhibit 3 different response patterns when tested with the battery of agents in the UDS assay. The mutant mei-41 exhibits a highly positive UDS response following damage by all agents, consistent with its prior classification as excision-repair-proficient, but postreplication-repair-deficient for UV damage. The mutant mus(1)101, however, exhibits a strong positive UDS response following only UV damage and appears to be blocked in the excision repair of damage produced by both alkylating agents and X-irradiation. Finally, mus(3)310 exhibits no UDS response to alkylation, X-ray or UV damage. This is not consistent with its previous classification. Results obtained with the quantitative in vitro UDS assay are entirely consistent with the results from two separate in vivo measures of excision repair deficiency following DNA damage, larval hypersensitivity to killing and hypermutability in the sex-linked recessive lethal test.  相似文献   

5.
Heavy-ion beams are known to cause great damage to cellular components and are particularly renowned for their ability to generate DNA double-strand breaks (DSBs). To gain insight into the mutagenic effect of carbon-ion beams and how such damage is repaired by the cell, Neurospora crassa mutants deficient in one of three components involved in the repair of DSBs, nonhomologous end-joining (NHEJ), homologous recombination repair (HR), and the Mre11-Rad50-Xrs2 (MRX) complex, were irradiated with a carbon-ion beam and killing effect, mutation frequencies, and the type of mutation incurred by survivors were analysed. The sensitivity of the NHEJ-deficient strain (mus-52) was higher than that of the wild-type and the HR-deficient (mei-3) strains at low doses of radiation, but was little changed as the level increased. As a result both the wild-type and HR-deficient strains were more sensitive than the NHEJ-deficient strain at high radiation levels. In addition, the frequency of forward mutation at the adenine-3 (ad-3) loci of the NHEJ-deficient mutant was lower than that of the wild-type strain at all levels, while the mutation frequency of the HR-deficient strain was consistently ∼3-fold higher than the wild-type. From the comparison of mutation type of each strain, deletions were frequently observed in wild-type strain, whilst base substitution and deletion in the mus-52 and mei-3 strains. These mutations resulting from carbon-ion-beam irradiation depend on the mechanism invoked to cope with DSBs. Furthermore, in wild-type cells, these mechanisms likely compete to repair DSBs.  相似文献   

6.
It was shown that life span of wild type strain Canton-S increased after low doze gamma-irradiation. It was revealed the decrease of life span after irradiation in Drosophila mutants with defects of DNA damage sensation and repair genes mei-9 and mei-41, both in homozygous and heterozygous lines. In mei-41 line males' lives longer than females in contrast to other lines.  相似文献   

7.
We have examined the chromosomal X-ray hypersensitivity in relation to the cell cycle in larval neuroblasts of the mutagen-sensitive and excision repair-defective mutant mei-9 and of the mutagen-sensitive and post-replication repair-defective mutant mei-41 of Drosophila melanogaster. When compared to wild-type cells, cells bearing the mei-9L1 allele produced unusually high levels in particular of chromatid deletions and to a lesser extent also of isochromatid deletions, but virtually no exchange aberrations. The chromosomal hypersensitivity is apparent at M1 when cells are irradiated in S or G2 but not when irradiated in G1. On the other hand, following irradiation cells bearing the mei-41D5 allele predominantly produce chromosome deletions. Also dicentric and chromatid exchange formation is enhanced with a moderate increase in chromatid deletions. The phases of major sensitivity are the S and G1. Mei-9 and mei-41 mutants have been classified to date as proficient in DNA double-strand break repair. The data presented in this paper revealed an S-independent clastogenic hypersensitivity of mei-9 and mei-41 cells. They are interpreted as indicative evidence for the presence of impaired DNA double-strand break repair. The cell-cycle-related difference in the ratio of chromatid- versus chromosome-type deletions in both mutants suggests repair defects at partially different phases of the cell cycle in mei-9 and mei-41 mutant cells.  相似文献   

8.
Escherichia coli K-12, polAl(-) is a mutant strain whose extracts are deficient in Kornberg deoxyribonucleic acid (DNA) polymerase activity. We have compared the mutant and parental strains on the basis of a number of responses to ultraviolet (UV) and X-irradiation. For both types of radiation, the mutant is more sensitive by approximately the same factor as measured by reduction in colony formation, depression of DNA synthesis, and enhancement of DNA degradation. The rate of repair of X-ray-induced single-strand breaks in the mutant is also slower, as is the repair of breaks after excision repair of UV damage. On the other hand, the mutant has a significant capability to reactivate UV-irradiated lambda phage, although it is almost totally deficient in the ability to carry out UV reactivation. The data indicate that the polAl mutation leaves the cells with some ability to perform excision and strand-rejoining repair but that an exonuclease, whose identity remains obscure, is the agent responsible for the extensive breakdown of the DNA in polAl(-) cells after irradiation.  相似文献   

9.
The repair-deficient mutants mei-9a, mei-41D5, mus101D1, mus104D1 and mus302D1 in Drosophila melanogaster were investigated regarding their effects on spontaneous and X-ray-induced chromosome loss in postmeiotic cells. Each mutant was incorporated singly into XC2, and the ring-X male provided with BSYy+. From matings of males carrying mus101D1, mus302D1 or mei-41D5, mutants identifying a caffeine-sensitive (CAS) postreplication-repair pathway, with corresponding mutant females, and non-mutant males to non-mutant females, overall frequencies of spontaneous partial loss and spontaneous complete loss were significantly increased in each mutant cross except for spontaneous complete loss with mus302 where an increase was noted only in brood 2. Similar findings were noted when males carrying the excision-repair mutant mei-9a were mated with mei-9a females. Males carrying the mutant mus104D1, identifying a caffeine-insensitive (CIS) postreplication-repair pathway, tested with mus104D1 females, produced results that were not significantly different from non-mutant controls. When males were given 3000 rad X-irradiation, frequencies of induced partial loss were significantly higher with mus101D1, mus302D1, mei-41D5 and mei91, and not significantly higher with mus101D1, mus302D1, mei41D5 and mei-9a, and not significantly different from controls with mus104D1. It was suggested that the functional CAS postreplication-repair pathway primarily promotes repair of breaks while an alternative pathway(s) not defined by mus104 promotes misrepair. Therefore, the significant increases in both spontaneous and induced partial loss with the excision-repair-deficient mutant mei-9a suggests the possibility that (a) the excision-repair-pathway may not function in misrepair and (b) the undefined misrepair pathway may be dominant pathway for postreplication repair in Drosophila since mei-9a females presumably have functional postreplication repair and misrepair capacity. The suggestion that the CAS postreplication-repair pathway and the excision-repair pathway function primarily in repair, and an undefined pathway in misrepair is in line with the finding that with mus104D1, no significant increase was found in spontaneous complete loss, but with mus101D1, mus302D1, mei-41D5 and mei-9a significant increases were observed. Results on induced complete loss, with the exception of those with mei-41D5, show a poor correlation with other classes of loss of each of the mutants. Possible explanations for this discrepancy are discussed.  相似文献   

10.
Kazuo Fujikawa  Sohei Kondo 《Genetics》1986,112(3):505-522
DNA repair-defective alleles of the mei-9, mei-41, mus-104 and mus-101 loci of Drosophila melanogaster were introduced into stocks bearing the UZ and SZ marker sets. Males with the UZ marker set, z1 (zeste allele) and w+(TE) (genetically unstable white allele presumably caused by a transposable element), or the SZ marker set, z1 and w+R (semistable white allele caused by partial duplication of the w+ locus plus transposon insert), were exposed to EMS at the first instar. After emergence, adult males bearing red spots on lemon-yellow eyes were scored as flies with somatic reversions of w+(TE) or w+R. The relative mutabilities (relative values of reversion frequency at an equal EMS dose) of either w+(TE) or w+R in a repair-proficient strain and in mei-9, mei-41, mus-104 and mus-101 strains were 1: approximately 1.2:0.3:0.3:0.7, despite the fact that w+(TE) reverted two to three times as frequently as w+R under both the repair-proficient and repair-deficient genetic conditions. Similarly, after treatment with MMS, MNNG and ENNG, w+(TE) was somatically more mutable in the mei-9 strain and less mutable in the mei-41 and mus-104 strains than in the repair-proficient strain. From these results, we propose that mutagenic lesions produced in DNA by treatment with these chemicals are converted to mutant DNA sequences via the error-prone repair mechanisms dependent on the products of the genes mei-41+ (mei-41 and mus-104 being alleles of the same locus) and mus-101+, whereas they are eliminated by mei-9+-dependent excision repair. In contrast to the approximately linear responses of induced reversions of w+(TE) with ENNG in the repair-proficient, mei-9, and mei-41 strains, seemingly there were dosage insensitive ranges for induced reversion with MNNG in the repair-proficient and mei-41 strains, but not for reversion in the mei-9 strain; w+(TE) in the mus-104 strain was virtually nonmutable with MNNG and ENNG. These results suggest that O6-methylguanine (O6MeG) produced in DNA with MNNG, but not O6-ethylguanine produced with ENNG, is almost completely repaired in a low dose range by constitutive activity of DNA O6MeG transmethylase. From the distribution of clone sizes of spontaneous revertant spots and other data, we propose that both w+(TE) and w+R have a similar tendency to spontaneously revert more frequently at early rather than at later developmental stages probably reflecting a common property of their inserted transposons.  相似文献   

11.
Plasmid DNA substrates were X-irradiated and injected into the nuclei of Xenopus laevis oocytes. After incubation for 20 h, DNA was recovered from the oocytes and analyzed simultaneously for repair and for intermolecular homologous recombination by electrophoresis and bacterial transformation. Oocyte-mediated repair of DNA strand breaks was observed with both methods. Using a repair-deficient mutant Escherichia coli strain and its repair-proficient parent as hosts for the transformation assay, we also demonstrated that oocytes repaired oxidative-type DNA base damage induced by X-rays. X-irradiation of a circular DNA stimulated its potential to recombine with a homologous linear partner. Recombination products were detected directly by Southern blot hybridization and as bacterial transformant clones expressing two antibiotic resistance markers originally carried separately on the two substrates. The increase in recombination was dependent on X-ray dose. There is some suggestion that lesions other than double-strand breaks contribute to the stimulation of oocyte-mediated homologous recombination. In summary, oocytes have considerable capacity to repair X-ray-induced damage, and some X-ray lesions stimulate homologous recombination in these cells.  相似文献   

12.
Escherichia coli K-12 cells incubated in buffer can repair most of their X-ray-induced DNA single-strand breaks, but additional single-strand breaks are repaired when the cells are incubated in growth medium. While the radC102 mutant was proficient at repairing DNA single-strand breaks in buffer (polA-dependent repair), it was partially deficient in repairing the additional single-strand breaks (or alkali-labile lesions) that the wild-type strain can repair in growth medium (recA-dependent repair), and this repair deficiency correlated with the X-ray survival deficiency of the radC strain. In studies using neutral sucrose gradients, the radC strain consistently showed a small deficiency in rejoining X-ray-induced DNA double-strand breaks, and it was deficient in restoring the normal sedimentation characteristics of the repaired DNA.  相似文献   

13.
The frequencies of spontaneous and ethylmethanesulfonate and X-ray-induced mutations in III chromosome of strains D-32 (wild type) and mei-9LI deficient in excision repair have been studied. Mutations have been induced in mature spermatozoa and analysed using multiply marked strain rucuca. It has been shown that the spectra of mutability and frequencies of mutations don't differ in both strains. It indicates the absence of specificity of mutagens studied.  相似文献   

14.
Mutagen sensitive strains (mus) in Drosophila are known for their hypersensitivity to mutagens and environmental carcinogens. Accordingly, these mutants were grouped in pre- and post-replication repair pathways. However, studying mutants belonging to one particular repair pathway may not be adequate for examining chemical-induced genotoxicity when other repair pathways may neutralize its effect. To test whether both pre-and post-replication pathways are involved and effect of Cr(III)- and Cr(VI)-induced genotoxicity in absence or presence of others, we used double mutant approach in D. melanogaster. We observed DNA damage as evident by changes in Comet assay DNA migration in cells of larvae of Oregon R(+) and single mutants of pre- (mei-9, mus201 and mus210) and post- (mei-41, mus209 and mus309) replication repair pathways and also in double mutants of different combinations (pre-pre, pre-post and post-post replication repair) exposed to increasing concentrations of Cr(VI) (0.0, 5.0, 10.0 and 20.0 μg/ml) for 48 h. The damage was greater in pre-replication repair mutants after exposure to 5.0 μg/ml Cr(VI), while effects on Oregon R(+) and post replication repair mutants were insignificant. Post-replication repair mutants revealed significant DNA damage after exposure to 20.0 μg/ml Cr(VI). Further, double mutants generated in the above repair categories were examined for DNA damage following Cr(VI) exposure and a comparison of damage was studied between single and double mutants. Combinations of double mutants generated in the pre-pre replication repair pathways showed an indifferent interaction between the two mutants after Cr(VI) exposure while a synergistic interaction was evident in exposed post-post replication repair double mutants. Cr(III) (20.0 μg/ml) exposure to these strains did not induce any significant DNA damage in their cells. The study suggests that both pre- and post-replication pathways are affected in Drosophila by Cr(VI) leading to genotoxicity, which may have consequences for metal-induced carcinogenesis.  相似文献   

15.
Yegorova and colleagues (1978) showed that a mutant strain of Drosophila melanogaster (ebony) was more sensitive to UV-induced killing of embryos and also less proficient in photoreactivating (PR) ability than a wild-type (Canton-S) strain and that the genes governing UV sensitivity and PR ability were different and presumably located on the autosomes. The experiments reported in the present paper were designed to compare the patterns of sensitivity of these 2 strains and their hybrids to X-irradiation. The sensitivity of the larvae to the killing effects of X-irradiation, and of male and female germ-cell stages to the X-ray induction of genetic damage was studied.It was found that the larvae of the ebony strain are more sensitive to X-ray-induced killing than those of the Canton-S strain. The frequencies of radiation-induced dominant lethals and sex-linked recessive lethals are higher in spermatozoa sampled from ebony males than in those of Canton-S males. In spermatozoa sampled from hybrid males, the yields of dominant lethals are no higher than in those sampled from Canton-S males and do not seem to depend on the origin of the X-chromosome. There are no statistically significant differences between the ebony and Canton-S strains in the sensitivity of their spermatozoa to the induction of autosomal translocations.Stage-7 oocytes sampled from ebony females are more sensitive to the X-ray induction of dominant lethality than are those from Canton-S females; oocytes sampled from hybrid females manifest a level of sensitivity that is significantly lower than that in either parental strain. The frequencies of X-chromosome losses induced in in this germ-cell stage are significantly lower in ebony than in Canton-S females at least at the exposure level of 3000 R at which 3 experiments were carried out. There are no measurable differences in the amount of dominant lethality induced in stage-14 oocytes of ebony, Canton-S and hybrid females.When X-irradiated Berlin-K males are mated to ebony or Canton-S females, the yields of dominant lethals are higher when ebony females are used, showing that there is a “maternal effect” for this kind of damage. Such a maternal effect is also found for sex-linked recessive lethals (irradiated Muller-5 males mated to ebony or Canton-S females). However, when irradiated ring-X-chromosome-carrying males are mated to ebony or Canton-S females, the frequencies of paternal sex-chromosome losses (scored as XO males) are lower when ebony females are used.These results have been interpreted on the assumption that the ebony strain is homozygous for recessive, autosomal genes that confer increased radiosensitivity and that the Canton-S strain carries the normal, wild-type alleles for these genes. The higher yields of dominant and recessive lethals in mature spermatozoa and of dominant lethals in stage-7 oocytes are a consequence of an enhanced sensitivity to the mutagenic (in particular, to the chromosome-breaking) effects of X-irradiation and/or of defective repair of radiation-induced genetic damage. The lower yield of XO males from irradiated stage-7 oocytes of ebony females is probably a consequence of a defect in the repair of chromosome-breakage effects, resulting in the conversion of potential X losses in females into dominant lethals. The “maternal effects” for dominant lethals, sex-linked recessive lethals and for the loss of ring-X chromosomes are assumed to have a common causal basis, namely, a defective repair of chromosome-breakage events in the females of the ebony strain.  相似文献   

16.
6 mutant alleles of the mei-41 locus in Drosophila melanogaster are shown to cause hypersensitivity to hydroxyurea in larvae. The strength of that sensitivity is directly correlated with the influence of the mutant alleles on meiosis in that: alleles exhibiting a strong meiotic effect (mei-41D2, mei-41D5, mei-41D7) are highly sensitive; alleles with negligible meiotic effects (mei-41(104)D1, mei-41(104)D2) are moderately sensitive and an allele which expresses meiotic effects only under restricted conditions (mei-41D9) has an intermediate sensitivity. This sensitivity is not a general feature of strong postreplication repair-deficient mutants, because mutants with that phenotype from other loci do not exhibit sensitivity (mus(2)205A1, mus(3)302D1, mus(3)310D1). The observed lethality is not due to hypersensitivity of DNA synthesis in mei-41 larvae to hydroxyurea as assayed by tritiated thymidine incorporation. Lethality is, however, potentially attributable to an abnormal enhancement of chromosomal aberrations by hydroxyurea in mutant mei-41 larvae. Both in vivo and in vitro exposure of neuroblast cells to hydroxyurea results in an increase in 3 types of aberrations which is several fold higher in mei-41 tissue. Since hydroxyurea disrupts DNA synthesis, these results further implicate the mei-41 locus in DNA metabolism and provide an additional tool for an elucidation of its function. The possible existence of additional genes of this nature is suggested by a more modest sensitivity to hydroxyurea which has been detected in two stocks carrying mutagen-sensitive alleles of alternate genes.  相似文献   

17.
Yildiz O  Kearney H  Kramer BC  Sekelsky JJ 《Genetics》2004,167(1):263-273
Drosophila mei-9 is essential for several DNA repair and recombination pathways, including nucleotide excision repair (NER), interstrand crosslink repair, and meiotic recombination. To better understand the role of MEI-9 in these processes, we characterized 10 unique mutant alleles of mei-9. These include a P-element insertion that disrupts repair functions but not the meiotic function; three nonsense mutations, one of which has nearly wild-type levels of protein; three missense mutations, one of which disrupts the meiotic function but not repair functions; two small in-frame deletions; and one frameshift.  相似文献   

18.
The pleiotropic mutant lethal(3)giant larvae [l(3)gl] of Drosophila hydei exhibits among other anatomical defects, hypertrophy of the larval brain and imaginal discs. Both hypertrophic tissues when transplanted into wild-type female flies behave as fast growing and lethal neoplasms. Implanted into mature wild-type larvae they fail to metamorphose. When l(3)gl neoplastic brain tissue or imaginal discs were mixed with normal imaginal discs, cultured in vivo in the abdomen of adult females and transplanted into mature wild-type larvae, the following results were obtained. The invasive l(3)gl brain neoplasm, while fatal for adult hosts, had no effect on the metamorphosis of normal imaginal disc tissue. On the other hand, the noninvasive l(3)gl imaginal disc neoplasms when mixed with normal imaginal disc tissue inhibited its development and metamorphosis in the wild-type host. This inhibitory effect was not observed when the tissues were injected as separate implants into the same host.  相似文献   

19.
Stage-Specific Effects of X-Irradiation on Yeast Meiosis   总被引:7,自引:4,他引:3       下载免费PDF全文
L. W. Thorne  B. Byers 《Genetics》1993,134(1):29-42
Previous work has shown that cdc13 causes meiotic arrest of Saccharomyces cerevisiae following DNA replication by a RAD9-dependent mechanism. In the present work, we have further investigated the implicit effects of chromosomal lesions on progression through meiosis by exposing yeast cells to X-irradiation at various times during sporulation. We find that exposure of RAD9 cells to X-irradiation early in meiosis prevents sporulation, arresting the cells at a stage prior to premeiotic DNA replication. rad9 meiotic cells are much less responsive to X-irradiation damage, completing sporulation after treatment with doses sufficient to cause arrest of RAD9 strains. These findings thereby reveal a RAD9-dependent checkpoint function in meiosis that is distinct from the G(2) arrest previously shown to result from cdc13 dysfunction. Analysis of the spores that continued to be produced by either RAD9 or rad9 cultures that were X-irradiated in later stages of sporulation revealed most spores to be viable, even after exposure to radiation doses sufficient to kill most vegetative cells. This finding demonstrates that the lesions induced by X-irradiation at later times fail to trigger the checkpoint function revealed by cdc13 arrest and suggests that the lesions may be subject to repair by serving as intermediates in the recombination process. Strains mutant for chromosomal synapsis and recombination, and therefore defective in meiotic disjunction, were tested for evidence that X-ray-induced lesions might alleviate inviability by promoting recombination. Enhancement of spore viability when spo11 (but not hop1) diploids were X-irradiated during meiosis indicates that induced lesions may partially substitute for SPO11-dependent functions that are required for the initiation of recombination.  相似文献   

20.
The purpose of this study was to investigate possible involvement of poly(ADP-ribosyl)ation reactions in X-ray-induced cell killing, repair of potentially lethal damage (PLD), and formation and repair of radiation-induced DNA damage. As tools we used the inhibitors of poly(ADP-ribose)polymerase, 3-aminobenzamide (3AB), and 4-aminobenzamide (4AB). Both drugs inhibited PLD repair equally well but did not increase radiation-induced cell killing when cells were plated immediately after irradiation. 3AB affected repair of radiation-induced DNA damage, while 4AB had no effect. When 3AB was combined with aphidicolin (APC), it was found that the amount of DNA damage increased during the postirradiation incubation period. This means that the presence of 3AB stimulates the formation of DNA damage after X-irradiation. It is concluded that 3AB and 4AB sensitize HeLaS3 cells for radiation-induced cell killing by inhibiting repair of PLD. Because of the different effects of both inhibitors on repair of PLD and repair of radiation-induced DNA damage (a process known to be affected by inhibition of poly(ADP-ribosyl)ation), it is concluded that the observed inhibition of PLD repair is not caused by inhibition of poly(ADP-ribose)polymerase, and that the inhibitors affect repair of PLD and repair of DNA damage through independent mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号