首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Abstract Legionella pneumophila strains isolated from different sources were tested for their host range in the protists Acanthamoeba castellanii, Hartmannella vermiformis and Entamoeba histolytica . It has been shown that A. castellanii and H. vermiformis but not E. histolytica support the intracellular replication of L. pneumophila . Furthermore it could be demonstrated that in vivo virulence in the guinea pig and the intracellular growth in U937 cells coincides with the capability to replicate intracellularly in A. castellanii at 37°C. The infectivity of L. pneumophila that had sustained a 48 hours nutrient deprivation was not significantly different from that of legionellae grown to log-phase on BCYE plates. In contrast the nutrient limitation on A. castellanii increased the amount of intracellular legionellae at the beginning of infection. An initial opsonin independent attachement stage of legionellae to U937 cells was demonstrated by scanning electron microscopy. In contrast, L. pneumophila's capability of stable or long term attachmennt to A. castellanii was shown to be inefficient.  相似文献   

2.
Survival and distribution of legionellae in the environment are assumed to be associated with their multiplication in amoebae, whereas the ability to multiply in macrophages is usually regarded to correspond to pathogenicity. Since most investigations focused on Legionella pneumophila serogroup 1, we examined the intracellular multiplication of different Legionella species in Mono Mac 6 cells, which express phenotypic and functional features of mature monocytes, and in Acanthamoeba castellanii, an environmental host of Legionella spp. According to the bacterial doubling time in Mono Mac 6 cells and in A. castellanii, seven clusters of legionellae could be defined which could be split further with regard to finer differences. L. longbeachae serogroup 1, L. jordanis, and L. anisa were not able to multiply in either A. castellanii or Mono Mac 6 cells and are members of the first cluster. L. dumoffi did not multiply in Mono Mac 6 cells but showed a delayed multiplication in A. castellanii 72 h after infection and is the only member of the second cluster. L. steigerwaltii, L. gormanii, L. pneumophila serogroup 6 ATCC 33215, L. bozemanii, and L. micdadei showed a stable bacterial count in Mono Mac 6 cells after infection but a decreasing count in amoebae. They can be regarded as members of the third cluster. As the only member of the fourth cluster, L. oakridgensis was able to multiply slight in Mono Mac 6 cells but was killed within amoebae. A strain of L. pneumophila serogroup 1 Philadelphia obtained after 30 passages on SMH agar and a strain of L. pneumophila serogroup 1 Philadelphia obtained after intraperitoneal growth in guinea pigs are members of the fifth cluster, which showed multiplication in Mono Mac 6 cells but a decrease of bacterial counts in A. castellanii. The sixth cluster is characterized by intracellular multiplication in both host cell systems and consists of several strains of L. pneumophila serogroup 1 Philadelphia, a strain of L. pneumophila serogroup 2, and a fresh clinical isolate of L. pneumophila serogroup 6. Members of the seventh cluster are a strain of agar-adapted L. pneumophila serogroup 1 Bellingham and a strain of L. pneumophila serogroup 1 Bellingham which was passaged fewer than three times on BCYE alpha agar after inoculation and intraperitoneal growth in guinea pigs. In comparison to members of the sixth cluster, both strains showed a slightly enhanced multiplication in Mono Mac 6 cells but a reduced multiplication in amoebae. From our investigations, we could demonstrate a correlation between prevalence of a given Legionella species and their intracellular multiplication in Mono Mac 6 cells. Multiplication of members of the genus Legionella in A. castellanii seems to be dependent on mechanisms different from those in monocytes.  相似文献   

3.
Previous studies using a murine model of coinhalation of Legionella pneumophila and Hartmannella vermiformis have shown a significantly enhanced intrapulmonary growth of L. pneumophila in comparison to inhalation of legionellae alone (J. Brieland, M. McClain, L. Heath, C. Chrisp, G. Huffnagle, M. LeGendre, M. Hurley, J. Fantone, and C. Engleberg, Infect. Immun. 64:2449-2456, 1996). In this study, we introduce an in vitro coculture model of legionellae, Mono Mac 6 cells (MM6) and Acanthamoeba castellanii, using a cell culture chamber system which separates both cell types by a microporous polycarbonate membrane impervious to bacteria, amoebae, and human cells. Whereas L. pneumophila has shown a maximal 4-log-unit multiplication within MM6, which could not be further increased by coculture with Acanthamoeba castellanii, significantly enhanced replication of L. gormanii, L. micdadei, L. steigerwaltii, L. longbeachae, and L. dumoffii was seen after coculture with amoebae. This effect was seen only with uninfected amoebae, not with Legionella-infected amoebae. The supporting effect for intracellular multiplication in MM6 could be reproduced in part by addition of a cell-free coculture supernatant obtained from a coincubation experiment with uninfected A. castellanii and Legionella-infected MM6, suggesting that amoeba-derived effector molecules are involved in this phenomenon. This coculture model allows investigations of molecular and biochemical mechanisms which are responsible for the enhancement of intracellular multiplication of legionellae in monocytic cells after interaction with amoebae.  相似文献   

4.
Aims:  To assess chlorine susceptibility of Legionella pneumophila grown from two amoebic hosts, Acanthamoeba castellanii and Hartmannella vermiformis .
Methods and Results:  After being released from amoebae, Leg. pneumophila were chlorinated at 2 and 5 mg l−1 for 5 min–24 h. Bacterial culturability and cytoplasmic membrane deterioration were quantified by culture assay on BCYEα agar and BacLight stains coupled with a fluorescent microscope, respectively. Chlorination reduced the culturability of Leg. pneumophila by 2·93–4·59 log CFU ml−1 and damaged cellular membrane by 53·8–99·2%. Moreover, cells released from H. vermiformis exhibited significantly lower degrees in culturability reduction ( P  = 0·0008) and membrane deterioration ( P  < 0·0001) when compared with those from A. castellanii . The amoebic genus is the most significant parameter affecting cytoplasmic membrane integrity of chlorinated Legionella ( P  < 0·0001), followed by free chlorine concentration ( P  = 0·042).
Conclusions:  Legionella pneumophila replicated from H. vermiformis possess greater chlorine resistance than the cells from A. castellanii .
Significance and Impact of the Study:  This study shows the heterogeneity of amoebae-grown Leg. pneumophila in chlorine susceptibility, which should be considered in the control of legionellae proliferation, particularly in the systems where H. vermiformis is dominant, e.g. hot water plumbing.  相似文献   

5.
J. HAY. D.V. SEAL, B.BILLCLIFFE AND J.H. FREER. 1995. The intracellular localization of Legionella pneumophila serogroup 1 within Acanthamoeba castellanii rendered the bacteria non-culturable on supplemented BCYE agar. DNA amplification, using two 19-mer primers, and hybridization using a 25-mer oligonucleotide probe, permitted detection of Leg. pneumophila in approximately 81% (29/36) of samples where the bacteria could not be detected using culture. A combination of co-cultivation of samples with Leg. pneumophila -naive A. polyphaga or Hartmannella vermiformis , incubation in a defined liquid medium or use of catalase indicated that approximately 31% (9/29) of the samples contained Leg. pneumophila which were viable although not culturable.  相似文献   

6.
Axenically and monoxenically grown Acanthamoeba castellanii, Acanthamoeba polyphaga and different isolates of Hartmannella vermiformis strains were examined by polyacrylamide isoelectric focusing in the pH range 3–10. Isoenzyme patterns of acid phosphatase (AP), propionyl esterase (PE), malate dehydrogenase (MDH), alcohol dehydrogenase (ADH), glucose phosphate isomerase (GPI) and phosphoglucomutase (PGM) were compared. Zymograms were used to reveal differences in typical isoenzyme patterns between axenically and monoxenically grown amoebae and to compare axenically grown A. castellanii, A. polyphaga and H. vermiformis. Comparison of zymograms for AP, PE and MDH between axenically grown Acanthamoeba and Hartmannella strains revealed different isoenzyme patterns. Acanthamoeba showed strong bands for ADH and extremely weak bands for GPI and PGM, while Hartmannella lacked ADH but possessed bands for GPI and PGM.\par Comparison of zymograms from axenically and monoxenically grown amoebae revealed a lower intensity and even lack of typical isoenzyme bands in lysates from monoxenic cultures. The observed changes in typical isoenzyme patterns induced by the bacterial substrate can influence the correct isoenzymatic typing of different strains in clinical and phylogenetic studies.  相似文献   

7.
Legionella pneumophila, the causative agent of Legionnaires' disease, is ubiquitously found in aquatic environments, associated with free living amoebae. Trophozoite forms of the genus Acanthamoeba have been shown to support the intracellular growth of Legionella while it has been proposed that cyst forms are related to survival in harsh environments. This underlines that amoebae are of primary importance in Legionella spreading. In this study, we followed the survival of L. pneumophila Lens over 6 months in a poor medium, with or without Acanthamoeba castellanii. The results demonstrated that L. pneumophila Lens could survive for at least 6 months in association with A. castellanii and that cultivable bacteria are to be found within expelled vesicles rather than within cysts. Our findings suggest that vesicles might be further studied in order to elucidate their production and their role in the environmental spreading of Legionella.  相似文献   

8.
The conjugative properties of an indigenous 85 MDa plasmid (designated pCH1) from Legionella pneumophila were studied. To determine if pCH1 was transmissible by conjugation, mating experiments were performed between legionellae that harboured pCH1 and several plasmid-less recipients. Plasmid transfer was monitored by colony hybridization, using a cloned 21.0 kb SalI restriction fragment from pCH1 as a probe. The results from these experiments showed that pCH1 could be conjugatively transferred into several strains of L. pneumophila serogroup 1 but not into strain Bloomington-2 (serogroup 3) or Escherichia coli. Southern hybridization experiments in which pCH1 DNA was used as a probe showed that pCH1 does not share homology with other indigenous L. pneumophila plasmids. There was no detectable DNA homology between pCH1 and L. pneumophila chromosomal DNA. Additional mating experiments revealed that pCH1 was unable to mobilize the L. pneumophila chromosome. The conjugative transfer of pCH1 into plasmid-less avirulent or virulent serogroup 1 strains did not alter the intracellular growth characteristics of these strains in U937 cells, a human-monocyte-like cell line, or in the amoeba Hartmannella vermiformis. These results suggest that pCH1 does not contribute to the ability of L. pneumophila to enter or grow within eukaryotic cells.  相似文献   

9.
The multiplications of low level Legionella pneumophila serogroup 1 cells by the coculture procedure with Acanthamoeba castellanii were tested in five strains. The cells in all strains proliferated effectively for isolating. This procedure might be a useful means of improving the successful isolation from environmental and clinical specimens of low level Legionella cells, and pursuing the source of infection.  相似文献   

10.
Free-living amoebae (FLA) are ubiquitous organisms that have been isolated from various domestic water systems, such as cooling towers and hospital water networks. In addition to their own pathogenicity, FLA can also act as Trojan horses and be naturally infected with amoeba-resisting bacteria (ARB) that may be involved in human infections, such as pneumonia. We investigated the biodiversity of bacteria and their amoebal hosts in a hospital water network. Using amoebal enrichment on nonnutrient agar, we isolated 15 protist strains from 200 (7.5%) samples. One thermotolerant Hartmannella vermiformis isolate harbored both Legionella pneumophila and Bradyrhizobium japonicum. By using amoebal coculture with axenic Acanthamoeba castellanii as the cellular background, we recovered at least one ARB from 45.5% of the samples. Four new ARB isolates were recovered by culture, and one of these isolates was widely present in the water network. Alphaproteobacteria (such as Rhodoplanes, Methylobacterium, Bradyrhizobium, Afipia, and Bosea) were recovered from 30.5% of the samples, mycobacteria (Mycobacterium gordonae, Mycobacterium kansasii, and Mycobacterium xenopi) were recovered from 20.5% of the samples, and Gammaproteobacteria (Legionella) were recovered from 5.5% of the samples. No Chlamydia or Chlamydia-like organisms were recovered by amoebal coculture or detected by PCR. The observed strong association between the presence of amoebae and the presence of Legionella (P < 0.001) and mycobacteria (P = 0.009) further suggests that FLA are a reservoir for these ARB and underlines the importance of considering amoebae when water control measures are designed.  相似文献   

11.
Biofilms similar to those present in water distribution pipes of anthropogenic aquatic systems were simulated in a rotating annular reactor using a non-Legionella community consisting of Aeromonas hydrophila, Escherichia coli, Flavobacterium breve and Pseudomonas aeruginosa. The impact of this community and Acanthamoeba castellanii on the replication of Legionella pneumophila was investigated. Despite the presence of 10(7) non-Legionella bacteria, culture and real-time polymerase chain reaction (PCR) results clearly showed that biofilm-associated Legionella bacteria only increased after intracellular replication in A. castellanii. Fluorescent in situ hybridization (FISH) staining of biofilm samples revealed that 48 h after addition of amoebae to the reactor, the amoeba population was lysing and replicated Legionella bacteria were released into the bulk water. This study demonstrated that amoebae like A. castellanii can play a crucial role in the increase and spread of L. pneumophila in anthropogenic aquatic systems and thus in the occurrence of Legionnaires' disease.  相似文献   

12.
We evaluated the use of peptone-yeast extract (PY) medium, different strains of Hartmannella vermiformis, and gentamicin in a coculture system to improve the discrimination of virulent and avirulent strains of Legionella pneumophila. H. vermiformis ATCC 50256 was unique among four strains of H. vermiformis, in that it multiplied equally well in Medium 1034 and PY medium (Medium 1034 without fetal calf serum, folic acid, hemin, and yeast nucleic acid and with a 50% reduction of peptone). However, both a virulent strain of L. pneumophila and its avirulent derivative strain multiplied in cocultures when PY medium was used. The multiplication of this avirulent strain was greatly reduced by incorporating gentamicin (1 (mu)g/ml) into the cocultivation system. Five virulent-avirulent sets of L. pneumophila strains were then tested for multiplication in cocultures with H. vermiformis ATCC 50256 and the gentamicin-containing PY medium. Only the virulent strains multiplied. The modified cocultivation system can discriminate between virulent and avirulent strains of L. pneumophila.  相似文献   

13.
The growth and starvation responses of Acanthamoeba castellanii and Hartmannella vermiformis were investigated in the presence and absence of Escherichia coli on an agar surface or within shaken suspensions. The amoebae perceived all the suspended systems to be unfavourable for growth, despite being challenged with high levels of prey, and as a consequence they exhibited a starvation response. However, the response differed between species, with A. castellanii producing characteristic cysts and H. vermiformis producing round bodies. These amoebic forms were reactivated into feeding trophozoites in the presence of bacterial aggregates, which formed in the suspended systems after 68 h of incubation. In contrast, both species of amoebae grew well in the presence of attached E. coli at a concentration of 1 x 10(6) cells cm(-2) of agar and yielded specific growth rates of c. 0.04 h(-1). Starvation responses were induced at the end of the growth phase, and these were equivalent to those recorded in the suspended systems. We conclude that, when suspended, amoebae in the 'floating form' cannot feed effectively on suspended prey, and hence the starvation response is initiated. Thus the majority of amoebic feeding is via trophozoite grazing of attached bacterial prey.  相似文献   

14.
Some protozoans isolated from aquatic habitats, including domestic water supplies, can support the intracellular replication of autochthonous legionellae in vitro. We studied the effect of incubating water samples containing amoebae on the sensitivity of culture for legionellae. Samples collected during investigations of legionellosis epidemics and shown by conventional culture procedures to contain amoebae, but not legionellae, were incubated at 35 degrees C and replated. Legionellae were recovered from 59 of 144 such samples. Species isolated included L. pneumophila, L. anisa, L. bozemanii, L. gormanii, L. micdadei, L. rubrilucens, L. sainthelensi, L. steigerwaltii, and an unnamed species. Acanthamoeba polyphaga, Acanthamoeba hatchetti, a Rosculus sp., Hartmannella vermiformis, and Vahlkampfia spp. were among the autochthonous amoebae identified. Legionellae were recovered by this procedure from only 3 of 63 samples that were negative for amoebae by conventional culture procedures. These results show that water samples negative for legionellae, but positive for amoebae, by standard culture techniques should be incubated and replated to maximize the sensitivity of culture for legionellae.  相似文献   

15.
A model was developed to study the multiplication of various Legionella spp. in tap water containing Hartmannella vermiformis. Tap water cultures prepared with the following components were suitable for the multiplication studies: Legionella spp., 10(3) CFU/ml; H. vermiformis, 10(4.4) cysts per ml; and killed Pseudomonas paucimobilis, 10(9) cells per ml. Cocultures were incubated at 37 degrees C for at least 1 week. The following legionellae multiplied in tap water cocultures in each replicate experiment: L. bozemanii (WIGA strain), L. dumoffii (NY-23 and TX-KL strains), L. micdadei (two environmental strains), and L. pneumophila (six environmental strains and one clinical isolate). Growth yield values for these strains were 0.6 to 3.5 log CFU/ml. Legionellae which did not multiply in replicate cocultures included L. anisa (one strain), L. bozemanii (MI-15 strain), L. micdadei (a clinical isolate), L. longbeachae, (one strain), and L. pneumophila (Philadelphia 1 strain). L. gormanii and an environmental isolate of L. pneumophila multiplied in only one of three experiments. None of the legionellae multiplied in tap water containing only killed P. paucimobilis. The mean growth yield (+/- standard deviation) of H. vermiformis in the cocultures was 1.2 +/- 0.1 log units/ml. H. vermiformis supports multiplication of only particular strains of legionellae, some of which are from diverse origins.  相似文献   

16.
Some protozoans isolated from aquatic habitats, including domestic water supplies, can support the intracellular replication of autochthonous legionellae in vitro. We studied the effect of incubating water samples containing amoebae on the sensitivity of culture for legionellae. Samples collected during investigations of legionellosis epidemics and shown by conventional culture procedures to contain amoebae, but not legionellae, were incubated at 35 degrees C and replated. Legionellae were recovered from 59 of 144 such samples. Species isolated included L. pneumophila, L. anisa, L. bozemanii, L. gormanii, L. micdadei, L. rubrilucens, L. sainthelensi, L. steigerwaltii, and an unnamed species. Acanthamoeba polyphaga, Acanthamoeba hatchetti, a Rosculus sp., Hartmannella vermiformis, and Vahlkampfia spp. were among the autochthonous amoebae identified. Legionellae were recovered by this procedure from only 3 of 63 samples that were negative for amoebae by conventional culture procedures. These results show that water samples negative for legionellae, but positive for amoebae, by standard culture techniques should be incubated and replated to maximize the sensitivity of culture for legionellae.  相似文献   

17.
A model was developed to study the multiplication of various Legionella spp. in tap water containing Hartmannella vermiformis. Tap water cultures prepared with the following components were suitable for the multiplication studies: Legionella spp., 10(3) CFU/ml; H. vermiformis, 10(4.4) cysts per ml; and killed Pseudomonas paucimobilis, 10(9) cells per ml. Cocultures were incubated at 37 degrees C for at least 1 week. The following legionellae multiplied in tap water cocultures in each replicate experiment: L. bozemanii (WIGA strain), L. dumoffii (NY-23 and TX-KL strains), L. micdadei (two environmental strains), and L. pneumophila (six environmental strains and one clinical isolate). Growth yield values for these strains were 0.6 to 3.5 log CFU/ml. Legionellae which did not multiply in replicate cocultures included L. anisa (one strain), L. bozemanii (MI-15 strain), L. micdadei (a clinical isolate), L. longbeachae, (one strain), and L. pneumophila (Philadelphia 1 strain). L. gormanii and an environmental isolate of L. pneumophila multiplied in only one of three experiments. None of the legionellae multiplied in tap water containing only killed P. paucimobilis. The mean growth yield (+/- standard deviation) of H. vermiformis in the cocultures was 1.2 +/- 0.1 log units/ml. H. vermiformis supports multiplication of only particular strains of legionellae, some of which are from diverse origins.  相似文献   

18.
ABSTRACT. Free-living soil amoebae consume a wide variety of food, including algae, yeast, small protozoa and especially bacteria, which they digest to fulfil their nutritional requirements. Amoebae play an active role in the nitrogen mineralization in soils due to their nitrogen metabolizing capacities. However, little is known about nitrogen metabolizing enzyme activities in these free-living soil amoebae. In this study a number of key enzymes involved in the nitrogen metabolism of the axeaically cultivated free-living soil amoebae Acanthamoeba castellanii, Acanthamoeba polyphaga and two different strains of Hartmannella vermiformis were determined. the specific enzyme activities for exponential growth phase ceils were calculated and it appeared that the species tested possessed urate oxidase, glutamine synthetase, NADH-dependent glutamate dehydrogenase, glutamate oxaloacetate transaminase and glutamate pyruvate transaminase activity. Glutamate synthase activity could not be detected in any of these species. the levels of specific activities varied depending on the enzymes tested. For all species the highest activities were detected for the transaminase reactions yielding glutamate, and for glutamate dehydrogenase. A general conclusion is that the pathway of nitrogen assimilation in free-living soil amoebae is similar to the one observed for other eukaryotes. Differences in specific activities were detected between the species.  相似文献   

19.
The lly locus (legiolysin) mediates the browning of the culture medium of Legionella pneumophila in the late stationary growth phase, presumably as a result of synthesis of homogentisic acid. Mutagenesis of the lly gene of the L. pneumophila Philadelphia I derivative JR32 did not affect intracellular replication in the natural host Hartmannella vermiformis. The Lly-negative mutant, however, showed a markedly decreased resistance to ordinary light. The cloned lly gene conferred an increased resistance to light in recombinant L. pneumophila and Escherichia coli K-12, indicating a contribution of the Lly protein to ecological adaptation of Legionella species.  相似文献   

20.
Legionella pneumophila is an opportunistic human pathogen that replicates within environmental amoebae including Acanthamoeba castellanii and Dictyostelium discoideum. The Icm/Dot type IV secretion system promotes phagocytosis and intracellular replication of L. pneumophila in an endoplasmic reticulum-derived 'Legionella-containing vacuole' (LCV). L. pneumophila adopts a biphasic life cycle consisting of a replicative growth phase and a transmissive (stationary) phase, the latter of which is characterized by the preferential expression of genes required for motility and virulence. A bioinformatic analysis of the L. pneumophila genome revealed a gene cluster homologous to the Vibrio cholerae cqsAS genes, encoding a putative quorum sensing autoinducer synthase (lqsA) and a sensor kinase (lqsS), which flank a novel response regulator (lqsR). We report here that an L. pneumophila lqsR deletion mutant grew in broth with the same rate as wild-type bacteria, but entered the replicative growth phase earlier. Overexpression of lqsR led to an elongated morphology of the bacteria. The lqsR mutant strain was found to be more salt-resistant and impaired for intracellular growth in A. castellanii, D. discoideum and macrophages, formation of the ER-derived LCV and toxicity. Moreover, L. pneumophila lacking LqsR, as well as strains lacking the stationary sigma factor RpoS or the two-component response regulator LetA, were phagocytosed less efficiently by A. castellanii, D. discoideum or macrophages. The expression of lqsR was dependent on RpoS and, to a lesser extent, also on LetA. DNA microarray experiments revealed that lqsR regulates the expression of genes involved in virulence, motility and cell division, consistent with a role for LqsR in the transition from the replicative to the transmissive (virulent) phase. Our findings indicate that LqsR is a novel pleiotropic regulator involved in RpoS- and LetA-controlled interactions of L. pneumophila with phagocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号