首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
烟草叶片愈伤组织BECTLIN Ⅰ基因的表达   总被引:1,自引:1,他引:0  
分别以烟草盆栽实生苗和组培继代苗的叶片为外植体,在MS (1.0 mg·L-1 6-BA与0.5mg·L-1 2, 4-D)培养基中诱导形成的愈伤组织为材料,检测与细胞程序性死亡有关的BECTLIN Ⅰ基因。RT-PCR检测表明,烟草盆栽实生苗和组培继代苗的叶片及其愈伤组织均有BECTLIN Ⅰ基因的表达,但组培继代苗叶片愈伤组织的BECTLIN Ⅰ基因表现出持续、稳定的表达,说明培养基中的激素可能对BECTLIN Ⅰ基因的表达产生影响,同时表明烟草叶片愈伤组织形成过程中可能产生了细胞程序化死亡,其结果可能导致烟草叶片原初形态不同、功能各异的细胞在脱分化阶段形成了形态结构和功能完全相似的胚性细胞。  相似文献   

2.
细叶黄芪叶肉原生质体植株再生   总被引:1,自引:0,他引:1  
从细叶黄芪(Astragalus tenuis)外植体愈伤组织分化出的再生苗叶片分离原生质体。原生质体培养在改良 K8p 培养基中形成了愈伤组织。增殖后的愈伤组织转入分化培养基中分化出苗。幼苗在生根培养基中长出不定根,再生成为完整植株。再生苗叶肉原生质体在 AY培养基中,种子无菌苗叶肉原生质体在改良 K8p 或 AY 培养基中均不能形成愈伤组织。较低的2,4-D 浓度有利于原生质体愈伤组织的形成和分化,过高的2,4-D 浓度对愈伤组织的形成和分化有不利的影响。  相似文献   

3.
紫背天葵愈伤组织的诱导和器官分化   总被引:1,自引:0,他引:1  
本文报道了紫背天葵种子、种胚异形苗及试管苗叶片的脱分化和植株再生的三种类型:(1)通过愈伤组织分化形成植株。(2)促使无菌苗叶片产生多生长中心,从而长成小植株。(3)由愈伤组织分化根后再分化出芽而成植株。在以 SH 培养基附加0.5 ppm 2,4-D、2ppmP-CPA、0.1ppmKT 和 MS 培养基附加0.1ppm 2,4-D、2.5ppm NAA、0.25ppm KT 得到愈伤组织。比较了不同浓度的 2,4-D 和不同浓度的蔗糖对愈伤组织发生的效应,得出1ppm2,4-D 效果好,蔗糖以3%为宜。发现愈伤组织来源于 MS 及用 MS 为基础的分化培养基,分别比来源于 SH 及用 SH 为基础的分化培养基的分化效率高。比较试验了 BA 和2ip 的分化效率,在0.25—2ppm 范围内 BA 对紫背天葵愈伤组织分化效率高。细胞学实验表明,叶片长出的小植株起源于表皮细胞。利用试管无菌苗叶片直接诱导植株的方法,可作为快速无性繁殖紫背天葵的手段。  相似文献   

4.
提高小麦原生质体再生植株频率的研究   总被引:4,自引:1,他引:4  
从小麦徐州211的成熟种子诱导愈伤组织,建立了胚性悬浮细胞系。酶解悬浮细胞获得原生质体,用含o.8%琼脂糖的改良Ms培葬基进行琼脂糖珠培养,再生细胞分裂,并形成愈伤组织。诱导再生愈伤组织分化.得到了完整的再生植株。原生质体培养两周后,加入降渗培养液可促进克隆的形成。在分化培养基中,低浓度蔗糖可提高植株分化率。高浓度的激动索和玉米素对芽的分化有效并能抑制愈伤化。再生愈伤组织诱导分化时期的早晚影响植林分化频率。  相似文献   

5.
本文介绍了一种设计上改进的基因枪,用这种新型基因枪将外源基因转移到水稻细胞获得了表达。用包有pBI 121质粒DNA的钨微弹轰击水稻悬浮细胞以及成熟种子胚后,在悬浮细胞中检测到了外源基因(GUS)的表达。胚诱导的愈伤组织在无抗生素选择的条件下扩增并分化、再生,共获得30株绿色小植株。经DNA斑点杂交测得其中两株的植物总DNA中存在GUS基因。Southern杂交分析证实GUS基因整合到了水稻基因组.  相似文献   

6.
高羊茅组织培养再生体系及GUS基因瞬间表达研究   总被引:5,自引:0,他引:5  
以成熟种子为外值体,对高羊茅纰织培养和植株再生体系进行了优化,分析了不同浓度2.4-D、6-BA和激动素对高羊茅愈伤组织诱导和愈伤组织分化成苗的影响.结果表明:9.0mg/L 2.4-L)对愈伤组织的诱导效果最佳.0.2mg/L激动素是愈伤组织分化成苗的最适浓度.二者的诱导率和分化率分别达到68.08%和45.83%。在愈伤组织继代培养基中附加1.0mg/L 2.4-D、0.5mg/L 6-BA和1.25mg/L CuSO4;有利于胚性愈伤组织的形成,可以明显促进愈伤组织分化。同时.采用基因枪法将GUS基因导入高羊茅愈伤组织中,通过组织化学染色检测到了GUS瞬间表达活性;并对影响CUS基因瞬间表达的因素进行了分析.以期为提高基因枪法遗传转化效率提供参考。  相似文献   

7.
从甘蔗(Saccharum officinarum L.)嫩叶外植体诱导愈伤组织,经继代培养后,挑选胚性愈伤组织,转入MS3 液体培养基,进行悬浮培养。当培养物分离出小粒状的细胞团,细胞变得小而圆时,用于分离原生质体。原生质体以琼脂糖固化的培养方式培养于MRP1 培养基中。由原生质体再生的愈伤组织有两种类型。挑选粒状、坚实的再生愈伤组织转移到N6 分化培养基上,“新台糖1 号”再生的愈伤组织,在含有KT 0.5 m g/L的培养基中,分化出绿芽并长成完整的植株。而“粤糖57-423”和“US66-56-9”再生的愈伤组织,在加有0.1% 的活性炭的培养基中,前者分化出白化苗,后者分化出根  相似文献   

8.
土人参的组织和单细胞培养及试管苗开花结实   总被引:12,自引:0,他引:12  
以土人参的花梗、茎和叶片为外植体在MS培养基上诱导出愈伤组织,诱导率为75%-90%。愈伤组织经分化和生根培养再生了完整植株。由组织培养再生苗的幼茎诱导的愈伤组织建立悬浮系。由悬浮系分离的单细胞在2/3MS液体培养基中振荡培养或振荡培养3周后转入双层培养均再生了愈伤组织,再生率分别为0.28%和0.41%。愈伤组织在含有较低浓度6-BA的培养基上分化出苗。幼苗生长迅速,每3周扩增6.7倍,再生植株  相似文献   

9.
防风悬浮细胞的原生质体再生植株   总被引:8,自引:0,他引:8  
防风(Saposhnikovia divaricata(Turcz.)Schischk)试管苗的根尖,下胚轴或叶柄切段在含有1mg/l 2,4-D 的 MS 固体培养基上,形成含有胚性细胞团的愈伤组织。愈伤组织经液体振荡培养,形成含有大量胚性细胞团的悬浮培养物。用含有 Onozuka R-10 1.5%、Mace-rozyme R-10 0.3%、蜗牛酶0.5%、CaCl_2 5mmol/l 和甘露醇0.6 mol/l(pH=5.8)的酶液从胚性细胞团游离得到原生质体。原生质体在培养的第4天出现第一次分裂,50天左右形成的细胞团大小为1—2mm。这些细胞团在含有0.5 mg/l 2,4-D 的 MS 固体培养基上形成愈伤组织。在含有0.1 mg/l 6-BA 或0.1 mg/l 2,4-D+0.5mg/l 6-BA 的 MS 固体培养基上,原生质体再生的愈伤组织分化出胚状体。胚状体在不含任何生长调节剂的 MS 固体培养基上发育成完整的原生质体再生植株。  相似文献   

10.
平贝母花粉植株的诱导及无性系的建立   总被引:8,自引:0,他引:8  
采用附加植物激素的MS、N_6、百合、米勒和改良怀特培养基,培养平贝母单核中期的花药,诱导出一些愈伤组织(平均诱导频率为0.20%),其中MS培养基的诱导效果最好。绝大多数再生植株出现在不加任何激素的1/2MS(其大量元素的含量是MS的一半)培养基上。再生植株的根尖细胞的染色体计数表明,约有1/4的细胞2n=12,证明再生植株是来源于花粉细胞的单倍体植株。在愈伤组织的分化培养中,建立起了能继代繁殖、不断保持绿苗分化能力的愈伤组织无性系。  相似文献   

11.
水稻条纹病毒(rice stripe virus, RSV)主要由介体昆虫灰飞虱Laodelphax striatellus以循回增殖型方式经卵传播, 目前RSV与灰飞虱间的互作研究很少。为了研究RSV侵染对灰飞虱基因表达的影响, 采用5条随机引物和3条锚定引物, 利用mRNA差异显示(differential display RT-PCR, DDRT-PCR)技术分析了带毒和无毒灰飞虱种群基因表达差异。且利用正交实验优化了DDRT-PCR反应体系中的模板浓度、锚定引物浓度、随机引物浓度、dNTPs浓度、镁离子浓度及Taq酶用量。结果表明: 最佳DDRT-PCR体系(25 μL)为cDNA 3.0 μg, 随机引物2.0 μmol/L, 锚定引物2.5 μmol/L, dNTPs 200 μmol/L, Mg2+ 2.0 μmol/L, Taq 酶2.0 U。mRNA差异显示共获得35条差异片段, 选取其中6条经RNA斑点杂交验证, 获得了4条阳性差异片段。其中3条阳性片段为带毒灰飞虱种群特异表达, 分别与5-羟色胺受体1D、 旋转酶B、 60S核蛋白L40高度同源, 无毒灰飞虱种群中特异表达的一条阳性片段在NCBI核酸数据库中比对无同源序列。DDRT-PCR优化体系的建立及部分差异片段的获得为进一步研究灰飞虱与RSV间的互作提供了帮助。  相似文献   

12.
为探讨小麦(Triticum aestivum L.)杂种优势形成的分子机理,选用普通小麦品种(系)3338、6554和2410TD及其强优势杂种A(3338×6654)和无优势杂种B(2410TD×6554),采用mRNA差异显示技术,对生长至三叶一心的根系(初生根)基因表达差异进行了比较研究.结果发现,小麦杂种一代苗期根系基因表达较亲本明显不同,表现为数量水平和质量水平上的差异,且差异表达基因的数目远高于我们以苗期叶片为材料的研究结果,表明小麦杂交种与其亲本间的基因差异表达与所研究的组织和器官有关.比较分析发现,在强优势杂种组合A中,超亲表达和偏高亲表达基因所占比例均明显高于无优势杂种组合B.以家族特异基因替代随机引物进行的差异显示结果表明,MADS-box家族基因在小麦杂交种和亲本苗期根系中存在着显著的表达差异,且差异表达类型以杂种特异表达和亲本基因在杂种一代沉默为主,说明MADS-box家族基因可能与小麦的杂种优势形成具有重要关系.对杂种和亲本基因表达差异与杂种优势的关系进行了分析和讨论.  相似文献   

13.
植物MADS-box 基因家族编码高度保守的转录因子, 参与了包括花发育在内的多种发育进程。为阐释双子叶植物草原龙胆(Eustoma grandiflorum)花器官发育的分子调控机制, 根据MADS-box基因保守序列设计简并引物, 用3'-RACE方法从 草原龙胆中克隆了4个花器官特异表达的MADS-box家族基因。序列和系统进化树分析表明, 这4个基因分别与金鱼草DEF基因、矮牵牛FBP3基因和FBP6基因以及拟南芥SEP3基因具有很高的同源性, 分别属DEF/GLO、AG-like和SEP-l ike亚家族。从而将这4个基因分别命名为EgDEF1、EgGLO1、EgPLE1和EgSEP3-1。推导的氨基酸序列显示, 这些基因编码的蛋白质都包含高度保守的MADS结构域、I结构域和K结构域, 每个基因均有其亚家族特异的C-末端功能域。基因特异性RT-PCR检测结果显示: EgDEF1 在萼片、花瓣、雄蕊及胚珠中高丰度表达, 在心皮中微量表达; 而EgGLO1在花瓣和雄蕊中高丰度表达, 在萼片中微量表达; 在根、茎、叶等营养器官中均未检测到上述2个基因的表达。EgPLE1在雌蕊、心皮和胚珠中特异表达, 但表达的丰度存在差异, 在雄蕊中的表达有所减弱。SEP-like亚家族基因EgSEP3-1在四轮花器官和胚珠中均特异表达,且表达丰度相对一致。  相似文献   

14.
植物MADS-box基因家族编码高度保守的转录因子,参与了包括花发育在内的多种发育进程。为阐释双子叶植物草原龙胆(Eustoma grandiflorum)花器官发育的分子调控机制,根据MADS-box基因保守序列设计简并引物,用3'-RACE方法从草原龙胆中克隆了4个花器官特异表达的MADS-box家族基因。序列和系统进化树分析表明,这4个基因分别与金鱼草DEF基因、矮牵牛FBP3基因和FBP6基因以及拟南芥SEP3基因具有很高的同源性,分别属DEF/GLO、AG-like和SEP-like亚家族。从而将这4个基因分别命名为EgDEF1、EgGLO1、EgPLE1和EgSEP3-1。推导的氨基酸序列显示,这些基因编码的蛋白质都包含高度保守的MADS结构域、I结构域和K结构域,每个基因均有其亚家族特异的C-末端功能域。基因特异性RT-PCR检测结果显示:EgDEF1在萼片、花瓣、雄蕊及胚珠中高丰度表达,在心皮中微量表达;而EgGLO1在花瓣和雄蕊中高丰度表达,在萼片中微量表达;在根、茎、叶等营养器官中均未检测到上述2个基因的表达。EgPLE1在雌蕊、心皮和胚珠中特异表达,但表达的丰度存在差异,在雄蕊中的表达有所减弱。SEP-like亚家族基因EgSEP3-1在四轮花器官和胚珠中均特异表达,且表达丰度相对一致。  相似文献   

15.
16.
The AGAMOUS gene of Arabidopsis thaliana is a homeotic gene involved in the development of stamens and carpels. This gene encodes a putative DNA-binding protein sharing a homologous region with the DNA-binding domains, MADS boxes, of yeast MCM1 and mammalian SRF. To examine the DNA-binding activity of the AGAMOUS protein, double-stranded oligonucleotides with random sequences of 40 bp in the central region were synthesized and mixed with the AGAMOUS MADS domain overproduced in Escherichia coli . Oligonucleotides which bound to the MADS domain were recovered by repeated immunoprecipitation with an antibody which recognizes the overproduced protein. From a comparison of the recovered DNA sequences, the consensus sequence of the high-affinity binding-sites for the AGAMOUS MADS domain was determined to be 5'-TT(A/T/G) CC(A/T)6GG(A/T/C)AA-3'. DNase I footprinting and methylation interference experiments showed that the MADS domain binds to this motif. Comparisons with the binding-site sequences of other MADS-box proteins revealed that the MCM1 binding-sites in a-mating type-specific promoters of Saccharomyces cerevisiae show similarities with the binding-site sequence of the AGAMOUS MADS domain. A synthetic MCM1 binding-site in the upstream region of the STE2 gene is recognized by the AGAMOUS MADS domain.  相似文献   

17.
New MADS box domains have been cloned from Asparagus officinalis L. using PCR technology. Several clones share high homology with the Arabidopsis agamous gene while other clones appear to represent novel MADS box domains. These results show that extended PCR primers are useful for selectively amplifying conserved DNA binding domains across widely divergent plant taxa.Asparagus MADS box sequences are listed in GenBank with the following accession numbers: UO7330 (Asp 13), UO7331 (Asp 16), UO7332 (Asp 22), UO7333 (Asp 23), UO7334 (Asp 3), UO7335 (Asp 39), UO7336 (Asp 8), UO7337 (Asp 4)  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号