首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the past ten years, several growth factor receptors have been shown to be ligand-regulated tyrosine kinases. Tyrosine kinase activity is essential for signal transmission, suggesting that phosphorylation cascades may play an important role. Considerable effort has gone into understanding the structure and function of tyrosine kinase receptors in order to define their mechanisms of signal transmission. However, the protein substrates of the receptor kinases have proven to be difficult to isolate and clone. This review focuses on the receptors for insulin, epidermal growth factor, and platelet-derived growth factor. They are all tyrosine kinases, but emerging evidence suggests that they utilize multiple separate signal transduction pathways. Work carried out during the next several years should yield considerable insight into the complexity of the components which interact with these tyrosine kinase receptors to regulate cellular growth and metabolism.  相似文献   

2.
Eph receptor tyrosine kinases and their ligands, ephrins, are membrane proteins coordinating a wide range of biological functions both in developing embryos and in adult multicellular organisms. Numerous studies have implicated Eph receptors in the induction of opposing responses, including cell adhesion or repulsion, support or inhibition of cell proliferation and cell migration, and progression or suppression of multiple malignancies. Similar to other receptor tyrosine kinases, Eph receptors rely on their ability to catalyze tyrosine phosphorylation for signal transduction. Interestingly, however, Eph receptors also actively utilize three kinase-deficient receptor tyrosine kinases, EphB6, EphA10, and Ryk, in their signaling network. The accumulating evidence suggests that the unusual flexibility of the Eph family, allowing it to initiate antagonistic responses, might be partially explained by the influence of the kinase-dead participants and that the exact outcome of an Eph-mediated action is likely to be defined by the balance between the signaling of catalytically potent and catalytically null receptors. We discuss in this minireview the emerging functions of the kinase-dead EphB6, EphA10, and Ryk receptors both in normal biological responses and in malignancy, and analyze currently available information related to the molecular mechanisms of their action in the context of the Eph family.  相似文献   

3.
A variety of cytokines, hormones and hematopoietic growth factors signal through the hematopoietin family of membrane receptors, which share several structural features, including a Trp-Ser-X-Trp-Ser motif and four paired cysteine residues. The signal transduction mechanisms utilized by these receptors have remained elusive, although tyrosine kinase activation has been one common element. Recently, a role for the cytoplasmic tyrosine kinases of the Janus kinase (JAK) family has been implicated in signalling by these receptors. There are currently three known JAK family kinases, including JAK1, JAK2 and TYK2. This review will focus on the role of such tyrosine kinases in hematopoietin receptor signal transduction, and address the possibility of the involvement also of unidentified Janus kinases.  相似文献   

4.
The T cell antigen receptor complex (TCR) and the interleukin 2 (IL-2) receptor are responsible for signal transduction that results in T lymphocyte activation and proliferation. Stimulation of either the TCR or the IL-2 receptor induces an increase in tyrosine phosphorylation of several cellular proteins indicating that signal transduction by both of these receptors involves the activation of a tyrosine protein kinase. Although the tyrosine protein kinases activated by these receptors have not yet been characterized the receptors themselves are known not to contain a tyrosine protein kinase domain. To determine if these receptors are coupled to the activation of similar or distinct tyrosine protein kinases we examined the patterns and kinetics of tyrosine phosphorylation induced by stimulation of these receptors on a cloned cell line. Hut 78.3 cells co-express the TCR and the p75 IL-2 receptor. These cells were stimulated with either OKT3 antibodies, specific for the TCR, or with IL-2. Signal transduction by these receptors was found to increase the tyrosine phosphorylation of a set of proteins unique to each stimulus. The kinetics of the tyrosine phosphorylation induced by OKT3 antibodies also differed from that induced by IL-2. The OKT3-dependent tyrosine phosphorylation reached maximal levels within 2.5 min and began to decline by 5 min after stimulation. In contrast, the IL-2-induced tyrosine phosphorylation did not achieve maximal levels until 15 min after the addition of IL-2 and the proteins remained phosphorylated even after 60 min of incubation. In addition the tyrosine phosphorylations induced by OKT3 and IL-2 were not affected by prior stimulation with the other agent. These results demonstrate that the TCR and IL-2 receptor are coupled to different signal transduction pathways responsible for the independent activation of distinct tyrosine protein kinases.  相似文献   

5.
Recent progress has been made in identifying signal transduction pathways controlled by receptor protein-tyrosine kinases. The receptors for nerve growth factor and hepatocyte growth factor have been identified as the Trk and Met tyrosine kinases. The stimulation of intracellular signal transduction pathways by activated receptors appears to involve the association of SH2-containing cytoplasmic signalling proteins with autophosphorylated receptors.  相似文献   

6.
The Src family of tyrosine protein kinases represent an expanding class of closely related intracellular enzymes that participate in the signal transduction pathways of a variety of surface receptors. One of the more surprising aspects of the information relating Src protein kinases to receptor signaling is the apparent diversity of receptor types with which the Src-related enzymes are reported to interact physically or functionally. Traditional biochemical and genetic approaches have yielded much information regarding the interactions between the Src tyrosine protein kinases and other cellular proteins in defined cell types, and emerging technologies, most notably homologous recombination in embryonal stem cells to achieve gene "knockouts," are providing new insights into the participation of the Src-related gene products in signal transduction and development.  相似文献   

7.
Eph-ephrin介导反向信号传递的研究进展   总被引:1,自引:0,他引:1  
双向信号传递是细胞间通讯领域中新近阐明的机制,酪氨酸激酶受体-配体(Eph-ephrin)介导的双向信号传递是此机制中的一个重要代表.Eph酪氨酸激酶家族受体及其配体ephrin家族成员是在神经发育、血管新生等方面起重要作用的分子,通过Eph向细胞内传递的信号称为正向信号,通过其配体ephrin的信号称为反向信号.Ephrin家族又可根据分子结构分为2个亚家族,其中ephrinB为跨膜蛋白,可通过酪氨酸磷酸化依赖和PDZ结合结构域介导2种方式向胞内传递反向信号,活化FAK、JNK、Wnt等信号通路,ephrinA为糖基磷脂酰肌醇锚定蛋白,也具有反向信号传递功能.  相似文献   

8.
Structural analysis of receptor tyrosine kinases   总被引:11,自引:0,他引:11  
Receptor tyrosine kinases (RTKs) are single-pass transmembrane receptors that possess intrinsic cytoplasmic enzymatic activity, catalyzing the transfer of the γ-phosphate of ATP to tyrosine residues in protein substrates. RTKs are essential components of signal transduction pathways that affect cell proliferation, differentiation, migration and metabolism. Included in this large protein family are the insulin receptor and the receptors for growth factors such as epidermal growth factor, fibroblast growth factor and vascular endothelial growth factor. Receptor activation occurs through ligand binding, which facilitates receptor dimerization and autophosphorylation of specific tyrosine residues in the cytoplasmic portion. The phosphotyrosine residues either enhance receptor catalytic activity or provide docking sites for downstream signaling proteins. Over the past several years, structural studies employing X-ray crystallography have advanced our understanding of the molecular mechanisms by which RTKs recognize their ligands and are activated by dimerization and tyrosine autophosphorylation. This review will highlight the key results that have emerged from these structural studies.  相似文献   

9.
Signal transduction systems based on tyrosine phosphorylation are central to cell–cell communication in multicellular organisms. Typically, in such a system, the signal is initiated by activating tyrosine kinases associated with transmembrane receptors, which induces tyrosine phosphorylation of the receptor and/or associated proteins. The phosphorylated tyrosines then serve as docking sites for the binding of various downstream effector proteins. It has long been observed that the cooperative association of the receptors and effectors produces higher-order protein assemblies (clusters) following signal activation in virtually all phosphotyrosine signal transduction systems. However, mechanistic studies on how such clustering processes affect signal transduction outcomes have only emerged recently. Here we review current progress in decoding the biophysical consequences of clustering on the behavior of the system, and how clustering affects how these receptors process information.  相似文献   

10.
The epidermal growth factor receptor (EGFR) and gp185erbB-2 are closely related tyrosine kinases. Despite extensive sequence and structural homology, these two receptors display quantitative and qualitative differences in their ability to couple with mitogenic signalling pathways. By using chimeric molecules between EGFR and erbB-2, we found that the determinants responsible for the specificity of mitogenic signal transduction are located in the amino-terminal half of the tyrosine kinase domain of either receptor. In the EGFR, mutational analysis within this subdomain revealed that deletion of residues 660 to 667 impaired receptor mitogenic activity without affecting its tyrosine kinase properties. This sequence is therefore likely to contribute to the specificity of substrate recognition by the EGFR kinase.  相似文献   

11.
Both receptor tyrosine kinases epidermal growth factor receptors (EGFRs) and their ligands are transmembrane proteins. It has been known that ligand binding activates cytoplasmic tyrosine kinase domains of EGFRs, resulting in the transduction of signals for cell proliferation, migration, differentiation or survival. In an EGFRs-ligands system, however, signal transduction occurs not only unidirectionally but also bidirectionally, which is regulated by cell-cell contact and proteolytic cleavage. Recent studies of proteolytic cleavage 'ectodomain shedding' of EGFRs and their ligands mediated by membrane-type metalloproteinases, a disintegrin and metalloproteinases have been unveiling novel functions and molecular mechanism of their remnant peptides. In addition, the study of the remnant peptide signalling would be essential for understanding the physiological and pathological relevance of anti-shedding therapeutic strategies for diseases such as cancer.  相似文献   

12.
13.
M Eder  J D Griffin    T J Ernst 《The EMBO journal》1993,12(4):1647-1656
The ability of the receptor for the hematopoietic cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) to function in non-hematopoietic cells is unknown. NIH3T3 fibroblasts were transfected with cDNAs encoding the alpha and beta subunit of the human GM-CSF receptor and a series of stable transformants were isolated that bound GM-CSF with either low (KD = 860 - > 1000 pM) or high affinity (KD = 20-80 pM). Low affinity receptors were not functional. However, the reconstituted high affinity receptors were found to be capable of activating a number of signal transduction pathways, including tyrosine kinase activity, phosphorylation of Raf-1, and the transient induction of c-fos and c-myc mRNAs. The activation of protein tyrosine phosphorylation by GM-CSF in NIH3T3 cells was rapid (< 1 min) and transient (peaking at 5-20 min) and resulted in the phosphorylation of proteins of estimated molecular weights of 42, 44, 52/53 and 58-60 kDa. Some of these proteins co-migrated with proteins from myeloid cells that were phosphorylated on tyrosine residues in response to GM-CSF. In particular, p42 and p44 were identified as mitogen-activated protein kinases (MAP kinases), and the phosphorylation on tyrosine residues of p42 and p44 MAP kinases occurred at the same time as the phosphorylation of Raf-1. However, despite evidence for activation of many mitogenic signal transduction molecules, GM-CSF did not induce significant proliferation of transfected NIH3T3 cells. These results suggest that murine fibroblasts contain signal transducing molecules that can effectively interact with the human GM-CSF receptor, and that are sufficient to activate at least some of the same signal transduction pathways this receptor activates in myeloid cells, including activation of one or more tyrosine kinase(s). However, the level of activation of signal transduction is either below a threshold of necessary activity or at least one mitogenic signal necessary for proliferation is missing.  相似文献   

14.
Signaling on the endocytic pathway   总被引:4,自引:0,他引:4  
Ligand binding to receptor tyrosine kinases and G-protein-coupled receptors initiates signal transduction events and induces receptor endocytosis via clathrin-coated pits and vesicles. While receptor-mediated endocytosis has been traditionally considered an effective mechanism to attenuate ligand-activated responses, more recent studies demonstrate that signaling continues on the endocytic pathway. In fact, certain signaling events, such as the activation of the extracellular signal-regulated kinases, appear to require endocytosis. Protein components of signal transduction cascades can assemble at clathrin coated pits and remain associated with endocytic vesicles following their dynamin-dependent release from the plasma membrane. Thus, endocytic vesicles can function as a signaling compartment distinct from the plasma membrane. These observations demonstrate that endocytosis plays an important role in the activation and propagation of signaling pathways.  相似文献   

15.
16.
Interleukin 2 (IL-2) has been shown to stimulate tyrosine phosphorylation of a number of proteins requiring only the p75 beta chain of the IL-2 receptor. Unlike the receptors for epidermal growth factor, insulin, and other growth factors, the p55-alpha and p75-beta chains of the IL-2 receptor have no tyrosine protein kinase domain suggesting that the IL-2 receptor complex activates protein kinases by a unique mechanism. The activation of tyrosine kinases by IL-2 in situ was studied and using a novel methodology has shown tyrosine kinase activity associated with the purified IL-2R complex in vitro. IL-2 stimulated the in situ tyrosine phosphorylation of 97 kDa and 58 kDa proteins which bound to poly(Glu,Tyr)4:1, a substrate for tyrosine protein kinases, suggesting these proteins had characteristics found in almost all tyrosine kinases. IL-2 was found to stimulate tyrosine protein kinase activity in receptor extracts partially purified from human T lymphocytes and the YT cell line. Biotinylated IL-2 was used to precipitate the high-affinity-receptor complex and phosphoproteins associated with it. The data indicated that the 97-kDa and 58-kDa phosphotyrosyl proteins were tightly associated with the IL-2 receptor complex. These proteins were phosphorylated on tyrosine residues by IL-2 stimulation of intact cells and ligand treatment of in vitro receptor extracts. Furthermore, the 97-kDa and 58-kDa proteins were found in streptavidin-agarose/biotinylated IL-2 purified receptor preparations and showed high affinity for tyrosine kinase substrate support matrixes. The experiments suggest that these two proteins are potential candidates for tyrosine kinases involved in the IL-2R complex signal transduction process.  相似文献   

17.
Waterman H  Yarden Y 《FEBS letters》2001,490(3):142-152
The major process that regulates the amplitude and kinetics of signal transduction by tyrosine kinase receptors is endocytic removal of active ligand–receptor complexes from the cell surface, and their subsequent sorting to degradation or to recycling. Using the ErbB family of receptor tyrosine kinases we exemplify the diversity of the down regulation process, and concentrate on two sorting steps whose molecular details are emerging. These are the Eps15-mediated sorting to clathrin-coated regions of the plasma membrane and the c-Cbl-mediated targeting of receptors to lysosomal degradation. Like in yeast cells, sorting involves not only protein phosphorylation but also conjugation of ubiquitin molecules. The involvement of other molecules is reviewed and recent observations that challenge the negative regulatory role of endocytosis are described. Finally, we discuss the relevance of receptor down regulation to cancer therapy.  相似文献   

18.
Tec family non-receptor tyrosine kinases have been implicated in signal transduction events initiated by cell surface receptors from a broad range of cell types, including an essential role in B-cell development. A unique feature of several Tec members among known tyrosine kinases is the presence of an N-terminal pleckstrin homology (PH) domain. We directly demonstrate that phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3) interacting with the PH domain acts as an upstream activation signal for Tec kinases, resulting in Tec kinase-dependent phospholipase Cgamma (PLCgamma) tyrosine phosphorylation and inositol trisphosphate production. In addition, we show that this pathway is blocked when an SH2-containing inositol phosphatase (SHIP)-dependent inhibitory receptor is engaged. Together, our results suggest a general mechanism whereby PtdIns-3,4,5-P3 regulates receptor-dependent calcium signals through the function of Tec kinases.  相似文献   

19.
Extracellular mitogen signal transduction is initiated by ligand binding to specific receptors of target cells. This causes a cellular response that frequently triggers the activation of tyrosine kinases. Non-receptor kinases like Src and Lyn can directly phosphorylate the Cdk inhibitor protein p27Kip1. Tyrosine phosphorylation can cause impaired Cdk-inhibitory activity and decreased stability of p27. In addition to these non-receptor tyrosine kinases, the receptor-associated tyrosine kinase Janus kinase 2 (JAK2) was recently identified to phosphorylate p27. JAK2 becomes activated through binding of various cytokines and growth factors to their corresponding receptors and can directly bind and selectively phosphorylate tyrosine residue 88 (Y88) of the Cdk inhibitor p27. This impairs Cdk inhibition by p27 and promotes its ubiquitin-dependent proteasomal degradation. Via this mechanism, JAK2 can link cytokine and growth factor initiated signal transduction to p27 regulation, whereas oncogenes like JAK2V617F or BCR-Abl can use this mechanism to inactivate the Cdk inhibitor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号