首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lysosomal storage disorder, mucopolysaccharidosis type I (MPS I), is caused by a deficiency of the enzyme alpha-L-iduronidase, which is involved in the breakdown of dermatan and heparan sulphates. There are three clinical phenotypes, ranging from the Hurler form characterised by skeletal abnormalities, hepatosplenomegaly and severe mental retardation, to the milder Scheie phenotype where there is aortic valve disease, corneal clouding, limited skeletal problems, but no mental retardation. In this study, 85 MPS I families (73 Hurler, 5 Hurler/Scheie, 7 Scheie) were screened for 9 known mutations (Q70X, A75T, 474-2a>g, L218P, A327P, W402X, P533R, R89Q, 678-7g>a). W402X was the most frequent mutation in our population (45.3%) and Q70X was the second most frequent (15.9%). In 30 families, either one or both of the mutations were not identified, which accounted for 25.9% of the total alleles. Therefore, all 14 exons of the alpha-L-iduronidase gene were screened in these patients and 23 different sequence changes were found, 17 of which were previously unknown. The novel sequence changes include 4 deletions (153delC, 628del5, 740delC, 747delG), 5 nonsense mutations (Q60X, Y167X, Q400X, R619X, R628X), 6 missense mutations (C205Y, G208V, H240R, A319V, P496R, S633L), a splice site mutation (IVS12+5g>a), and a rare polymorphism (A591T). The polymorphism and novel missense mutations were transiently expressed in COS-7 cells and all of them except the polymorphism showed complete loss of enzyme activity. In total, 165 of the 170 mutant alleles were identified in this study and despite the high frequency of W402X and Q70X, the identification of many novel mutations unique to individual families further highlights the genetic heterogeneity of MPS I.  相似文献   

2.
Mucopolysaccharidosis type I (MPS I) arises from a deficiency in the α-L-iduronidase (IDUA) enzyme. Although the clinical spectrum in MPS I patients is continuous, it was possible to recognize 3 phenotypes reflecting the severity of symptoms, viz., the Hurler, Scheie and Hurler/Scheie syndromes. In this study, 10 unrelated Chinese MPS I families (nine Hurler and one Hurler/Scheie) were investigated, and 16 mutant alleles were identified. Three novel mutations in IDUA genes, one missense p.R363H (c.1088G > A) and two splice-site mutations (c.1190-1G > A and c.792+1G > T), were found. Notably, 45% (nine out of 20) and 30% (six out of 20) of the mutant alleles in the 10 families studied were c.1190-1G > A and c.792+1G > T, respectively. The novel missense mutation p.R363H was transiently expressed in CHO cells, and showed retention of 2.3% IDUA activity. Neither p.W402X nor p.Q70X associated with the Hurler phenotype, or even p.R89Q associated with the Scheie phenotype, was found in this group. Finally, it was noted that the Chinese MPS I patients proved to be characterized with a unique set of IDUA gene mutations, not only entirely different from those encountered among Europeans and Americans, but also apparently not even the same as those found in other Asian countries.  相似文献   

3.
Mucopolysaccharidosis type I (MPS-I) is an autosomal recessive genetic disease caused by a deficiency of the lysosomal glycosidase alpha-L-iduronidase. Hurler (severe), Scheie (mild), and Hurler/Scheie (intermediate) syndromes are clinical subtypes of MPS-I, but it is difficult to distinguish between these subtypes by biochemical measurements. Mutation analysis was undertaken to provide a molecular explanation for the clinical variation seen in MPS-I. Using chemical cleavage and direct PCR sequencing, we have defined four previously undescribed mutations for MPS-I (delG1702, 1060 + 2t-->c, R89Q, and 678-7g-->a). R89Q and 678-7g-->a were found to be present in 40% of Scheie syndrome alleles. Expression of R89Q demonstrated reduced stability and activity of the mutant protein. The deleterious effect of R89Q may be potentiated by a polymorphism (A361T) to produce an intermediate phenotype. 678-7g-->a was found to be a mild mutation, since it was present in an index Scheie syndrome patient in combination with a severe allele (W402X). This mutation appears to allow a very small amount of normal mRNA to be produced from the allele which is likely to be responsible for the mild clinical phenotype observed. Both the 5' and 3' splice site mutations (1060 + 2t-->c and 678-7g-->a, respectively) result in high proportions of mature mRNAs containing introns, which has not been observed for other splicing mutations. The frameshift mutation (delG1702) and the 5' splice site mutation (1060 + 2t-->c) are both thought to be associated with severe MPS-I. The identification of these MPS-I mutations begins to document the expected genetic heterogeneity in MPS-I and provides the first molecular explanations for the broad range of clinical phenotypes observed.  相似文献   

4.
alpha-L-Iduronidase is a glycosyl hydrolase involved in the sequential degradation of the glycosaminoglycans heparan sulphate and dermatan sulphate. A deficiency in alpha-L-iduronidase results in the lysosomal accumulation and urinary secretion of partially degraded glycosaminoglycans and is the cause of the lysosomal storage disorder mucopolysaccharidosis type I (MPS I; Hurler and Scheie syndromes; McKusick 25280). The premature stop codons Q70X and W402X are two of the most common alpha-l-iduronidase gene (IDUA) mutations accounting for up to 70% of MPS I disease alleles in some populations. Here, we have reported a new mutation, making a total of 15 different mutations that can cause premature IDUA stop codons and have investigated the biochemistry of these mutations. Natural stop codon read-through was dependent on the fidelity of the codon when evaluated at Q70X and W402X in CHO-K1 cells, but the three possible stop codons TAA, TAG and TGA, had different effects on mRNA stability and this effect was context dependent. In CHO-K1 cells expressing the Q70X and W402X mutations, the level of gentamicin-enhanced stop codon read-through was slightly less than the increment in activity caused by a lower fidelity stop codon. In this system, gentamicin had more effect on read-through for the TAA and TGA stop codons when compared to the TAG stop codon. In an MPS I patient study, premature TGA stop codons were associated with a slightly attenuated clinical phenotype, when compared to classical Hurler syndrome (e.g. W402X/W402X and Q70X/Q70X genotypes with TAG stop codons). Natural read-through of premature stop codons is a potential explanation for variable clinical phenotype in MPS I patients. Enhanced stop codon read-through is a potential treatment strategy for a large sub-group of MPS I patients.  相似文献   

5.
alpha-L-Iduronidase activity is deficient in mucopolysaccharidosis type I (MPS I; Hurler syndrome, Scheie syndrome) patients and results in the disruption of the sequential degradation of the glycosaminoglycans dermatan sulfate and heparan sulfate. A monoclonal antibody-based immunoquantification assay has been developed for alpha-L-iduronidase, which enables the detection of at least 16 pg alpha-L-iduronidase protein. Cultured human skin fibroblasts from 12 normal controls contained 17-54 ng alpha-L-iduronidase protein/mg extracted cell protein. Fibroblasts from 23 MPS I patients were assayed for alpha-L-iduronidase protein content. Fibroblast extracts from one MPS I patient contained at least six times the level of alpha-L-iduronidase protein for normal controls--but contained no associated enzyme activity--and is proposed to represent a mutation affecting the active site of the enzyme. Fibroblast extracts from 11 MPS I patients contained 0.05-2.03 ng alpha-L-iduronidase protein/mg extracted cell protein, whereas immunodetectable protein could not be detected in the other 11 patients. Four fibroblast extracts with no immunodetectable alpha-L-iduronidase protein had residual alpha-L-iduronidase activity, suggesting that the mutant alpha-L-iduronidase in cultured cells from these MPS I patients has been modified to mask or remove the epitopes detected by two monoclonal antibodies used in the quantification assay. Both the absence of immunoreactivity in a mild MPS I patient and high protein level in a severe MPS I patient present limitations to the use of immunoquantification analysis as a sole measure of patient phenotype. Enzyme kinetic analysis of alpha-L-iduronidase from MPS I fibroblasts revealed a number of patients with either abnormal substrate binding or catalytic activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
Mucopolysaccharidosis type I (MPS I: McKusick 25280) is a clinically heterogenous lysosomal storage disorder which is caused by a variable deficiency in alpha-L-iduronidase activity (alpha-L-iduronide iduronohydrolase, EC 3.2.1.76). Cultured fibroblasts from an MPS I patient (cell line 2827) with a severe clinical phenotype (Hurler syndrome) have been characterized using immunochemical and biochemical techniques. Using a specific immunoquantification assay, we have demonstrated that cell line 2827 had an alpha-L-iduronidase protein content (189 ng/mg of extracted cell protein) at least six times greater than the mean level found in normal control fibroblasts (30 ng/mg of extracted cell protein). This was the only MPS I cell line, from a group of 23 MPS I patients, that contained greater than 7% of the mean level of alpha-L-iduronidase protein detected in normal controls. Cell line 2827 had very low alpha-L-iduronidase activity toward the fluorogenic substrate 4-methylumbelliferyl-alpha-L-iduronide, and a radiolabeled disaccharide substrate derived from heparin. Maturation studies of alpha-L-iduronidase in cell line 2827 showed apparently normal levels of alpha-L-iduronidase synthesis with delayed processing to the mature form. Subcellular fractionation experiments demonstrated alpha-L-iduronidase protein in lysosomal-enriched fractions isolated from cell line 2827, suggesting a normal cell distribution and supporting the proposed delayed processing. It is proposed that the MPS I patient described has an alpha-L-iduronidase gene mutation which affects both the active site and post-translational processing of the enzyme. This mutation must be structurally conservative because it does not result in instability either during maturation or in the lysosome.  相似文献   

8.
Mucopolysaccharidosis type I (MPS I; McKusick 25280) results from a deficiency in alpha-L-iduronidase activity. Using a bioinformatics approach, we have previously predicted the putative acid/base catalyst and nucleophile residues in the active site of this human lysosomal glycosidase to be Glu182 and Glu299, respectively. To obtain experimental evidence supporting these predictions, wild-type alpha-L-iduronidase and site-directed mutants E182A and E299A were individually expressed in Chinese hamster ovary-K1 cell lines. We have compared the synthesis, processing, and catalytic properties of the two mutant proteins with wild-type human alpha-L-iduronidase. Both E182A and E299A transfected cells produced catalytically inactive human alpha-L-iduronidase protein at levels comparable to the wild-type control. The E182A protein was synthesized, processed, targeted to the lysosome, and secreted in a similar fashion to wild-type alpha-L-iduronidase. The E299A mutant protein was also synthesized and secreted similarly to the wild-type enzyme, but there were alterations in its rate of traffic and proteolytic processing. These data indicate that the enzymatic inactivity of the E182A and E299A mutants is not due to problems of synthesis/folding, but to the removal of key catalytic residues. In addition, we have identified a MPS I patient with an E182K mutant allele. The E182K mutant protein was expressed in CHO-K1 cells and also found to be enzymatically inactive. Together, these results support the predicted role of E182 and E299 in the catalytic mechanism of alpha-L-iduronidase and we propose that the mutation of either of these residues would contribute to a very severe clinical phenotype in a MPS I patient.  相似文献   

9.
Enzyme replacement therapy (ERT) has proven to be an effective therapy for some lysosomal storage disorder (LSD) patients. A potential complication during ERT is the generation of an immune response against the replacement protein. We have investigated the antigenicity of two distantly related glycosidases, alpha-glucosidase (Pompe disease or glycogen storage disease type II, GSD II), and alpha-L-iduronidase (Hurler syndrome, mucopolysaccharidosis type I, MPS I). The linear sequence epitope reactivity of affinity purified polyclonal antibodies to recombinant human alpha-glucosidase and alpha-L-iduronidase was defined, to both glycosidases. The polyclonal antibodies exhibited some cross-reactive epitopes on the two proteins. Moreover, a monoclonal antibody to the active site of alpha-glucosidase showed cross-reactivity with a catalytic structural element of alpha-L-iduronidase. In a previous study, in MPS I patients who developed an immune response to ERT, this same site on alpha-L-iduronidase was highly antigenic and the last to tolerise following repeated enzyme infusions. We conclude that glycosidases can exhibit cross-reactive epitopes, and infer that this may relate to common structural elements associated with their active sites.  相似文献   

10.
The present study was intented to estimate the frequencies of the most common mutations (R778L, R778W, R778G, I1102T and H1069Q) of ATP7B in Indian Wilson disease (WD) population and to explore the correlation between genotype/phenotype and copper ATPase activity. A total of 33 WD patients and their family members from North West states of India were examined. The H1069Q, R778W and R778L mutations were absent in these WD patients. R778W and I1102T mutations were present in 36% of WD patients. Family analysis for these mutations using PCR-RFLP documented 5 carriers and 2 asymptomatic WD patients. The copper ATPase activity in WD patients was significantly reduced (50%) than that of control individuals. No significant difference was observed in copper stimulated ATPase activity between homozygous (R778W/R778W, I1102T/I1102T) and compound heterozygous (R778W/unknown mutation, I1102T/unknown mutation) WD patients. Serum ceruloplasmin, serum copper levels were significantly lower in homozygous WD patients than that of compound heterozygous. However, no significant difference was observed in liver copper contents between heterozygous and homozygous patients. In conclusion, the data suggest that R778W and I1102T are most common mutations and provide the basis of genetic (PCR-RFLP) diagnostic tool for Indian WD patients as well as in siblings/parents where biochemical parameters are ambiguous.  相似文献   

11.
Mucopolysaccharidosis type I (i.e., Hurler, Hurler-Scheie, and Scheie syndromes) and type II (i.e., Hunter syndrome) are lysosomal storage disorders resulting from alpha-L-iduronidase (IDUA) deficiency and iduronate-2-sulfatase (IDS) deficiency, respectively. The a priori probability that both disorders would occur in a single individual is approximately 1 in 5 billion. Nevertheless, such a proband was referred for whom clinical findings (i.e., a male with characteristic facies, dysostosis multiplex, and mental retardation) and biochemical tests indicated these concomitant diagnoses. In repeated studies, leukocyte 4 methylumbelliferyl-alpha-L-iduronidase activities in this kindred were as follows: <1.0 nmol/mg protein/h in the proband and proband's clinically normal sister; 45.3 in mother; and 45.7 in father (normal range 65.0-140). Leukocyte L-O-(alpha-iduronate-2-sulfate)-(1->4)-D-O-2,5-anhydro[1-3H]mannitol-6- sulfate activities were as follows: 0.0 U/mg protein/h in the proband; 5.7 in his sister; 4.9 in mother; and 15.0 in father (normal range 11.0-18.4). Multiple techniques, including automated sequencing of the entire IDS and IDUA coding regions, were employed to unravel the molecular genetic basis of these intriguing observations. The common IDS mutation R468W was identified in the proband, his mother, and his sister, thus explaining their biochemical phenotypes. Additionally, the proband, his sister, and his father were found to be heterozygous for a common IDUA mutation, W402X. Notably, a new IDUA mutation A300T was also identified in the proband, his sister, and his mother, accounting for reduced IDUA activity in these individuals; the asymptomatic sister, whose cells demonstrated normal glycosaminoglycan metabolism, is thus a compound heterozygote for W402X and the new allele. This A300T mutation is the first IDUA pseudodeficiency gene to be elucidated at the molecular level.  相似文献   

12.
Using phenyl-α-l-iduronide as substrate, we have examined the level of α-l-iduronidase activity in homogenates of fibroblasts derived from normal individuals, from patients affected with α-l-iduronidase deficiency disorders (Hurler syndrome, Scheie syndrome, and a disease of intermediate severity presumed to be a Hurler/ Scheie compound) and from parents of such patients. Extracts derived from the affected individuals had no detectable α-l-iduronidase activity, whereas those derived from heterozygotes varied between 20% and 95% of the normal mean. Overlap between normal and heterozygous levels was reduced if the α-l-iduronidase activity was expressed on the basis of the β-galactosidase activity in the same homogenate. Cultured amniotic fluid cells from normal pregnancies had less than half as much α-l-iduronidase activity as fibroblasts from normal adults; this might cause problems in distinguishing a heterozygous fetus from an affected one by the enzyme assay alone.  相似文献   

13.
J. Nelson 《Human genetics》1997,101(3):355-358
An epidemiological study of the mucopolysaccharidoses (MPS) in Northern Ireland using multiple ascertainment sources was carried out and the incidence rate for the period 1958–1985 was estimated. An incidence of approximately 1 in 76 000 live births was obtained for MPS 1H (Hurler phenotype); 1 in 280 000 for MPS 1 H/S (Hurler/Scheie phenotype); 1 in 140 000 live births (1 in 72 000 male live births) for MPS II (Hunter syndrome); 1 in 280 000 for MPS III (Sanfilippo syndrome) and 1 in 76 000 for MPS IV A (Morquio syndrome type A). No cases of MPS IS (Scheie phenotype), MPS IV B (Morquio syndrome type B) or MPS VI (Maroteaux–Lamy syndrome) were ascertained during the study period. Three cases of non-immune hydrops fetalis born to consanguineous parents were thought to be due to β-glucuronidase deficiency (MPS VII) on the basis of placental histology and enzyme studies on both parents but no living cases of MPS VII were ascertained. The overall incidence for all types of mucopolysaccharidosis was approximately 1 in 25 000 live births. A comparison is made with incidence estimates obtained from other published studies. Received: 25 May 1997 / Accepted: 22 August 1997  相似文献   

14.
A fluorogenic substrate for alpha-L-iduronidase, 4-methylumbelliferyl alpha-L-iduronide, has been newly synthesized and the enzyme activity has been measured in urine samples obtained from normal persons and patients suffering from mucopolysaccharidosis. Urine samples derived from a patient with Scheie syndrome showed greatly reduced activity compared with a normal adult at a similar age. This patient exhibited a high level of urinary excretion of dermatan sulfate and heparan sulfate, which could be interpreted in terms of her low alpha-L-iduronidase activity. The use of the fluorogenic substrate has some advantages over existing methods because of the high sensitivity and the relative ease of handling, and it should be useful not only for diagnosis but also for following the purification process of the enzyme.  相似文献   

15.

Background

Mucopolysaccharidosis type I (MPS I) is a rare lysosomal storage disease subdivided into three phenotypes of increasing severity: Scheie, Hurler-Scheie and Hurler. To gauge the effectiveness of treatments and to determine the load likely to fall on health-care systems, it is necessary to understand the prevalence and natural progression of the disease especially with regard to life-expectancy. In general such data on the natural history of lysosomal storage diseases is sparse.

Methods

Analysis of prevalence and patient survival in MPS I disease using a unique longitudinal data set initiated and maintained over a period of more than 20 years by the Society for Mucopolysaccharide Diseases (UK).

Results

The birth prevalence of MPS I in England and Wales over the period 1981 to 2003 was 1.07/100,000 births and within ± 5% of estimates reported in several studies that examined reasonably large populations. The median survival for MPS I patients (including all phenotypes irrespective of various treatments) was found by Kaplan-Meier analysis to be 11.6 years. This result was driven by the relatively poor survival of patients with the Hurler phenotype who, irrespective of any treatments received, had a median survival of 8.7 years; when censoring for receipt of bone marrow transplant (BMT) was implemented median survival of Hurler patients was diminished to 6.8 years. The difference between these survival curves was statistically significant by log rank test and can be attributed to beneficial effects of BMT and or selection of patients with superior prognosis for intervention with BMT. Survival curves for Hurler patients who received and did not receive BMT were very different. Probability of survival at 2 year after BMT was ~68% and was similar to this after 5 years (66%) and ten years (64%); the mean age of Hurler patients at receipt of BMT was 1.33 years (range 0.1 to 3 years). Follow up was insufficient to determine median survival of the milder phenotypes however, unsurprisingly, this was clearly superior to that for Hurler patients.

Conclusion

The birth prevalence of MPS I in England and Wales is 1.07/100,000 and the median survival for MPS I patients is 11.6 years.  相似文献   

16.
alpha-L-Iduronidase is a lysosomal enzyme, the deficiency of which causes mucopolysaccharidosis I (MPS I); a canine MPS I colony has been bred to test therapeutic intervention. The enzyme was purified to apparent homogeneity from canine testis and found to consist of two electrophoretically separable proteins that had common internal peptides but differed at their amino termini. A 57-base oligonucleotide, corresponding to the most probable codons of the longest peptide, was used to screen a canine testis cDNA library. Three cDNAs were isolated, two of which lacked the 5'-end whereas the third was full-length except for a small internal deletion. The composite sequence encodes an open reading frame of 655 amino acids that includes all sequenced peptides. The amino terminus of the larger protein, glutamic acid 26, is at the predicted signal peptide cleavage site, whereas the amino terminus of the smaller protein is leucine 106. There are six potential N-glycosylation sites and a non-canonical polyadenylation signal, CTTAAA. A search of GenBank showed that the amino acid sequence of alpha-L-iduronidase has similarity to that of a bacterial beta-xylosidase. A full-length cDNA corresponding to the composite sequence was constructed (pcIdu) and inserted into the pSVL expression vector (pSVcIdu). Two days after Cos-1 cells were transfected with pSVcIdu, their intracellular and secreted level of alpha-L-iduronidase activity has increased 8- and 22-fold, respectively, over the endogenous activity. Fibroblasts of MPS I dogs, which have no alpha-L-iduronidase activity, lacked the normal alpha-L-iduronidase mRNA of 2.2 kilobases and contained instead a trace amount of a 2.8-kilobase species. Isolation and characterization of an expressible alpha-L-iduronidase cDNA represents the first step toward mutation analysis and replacement therapy.  相似文献   

17.
Mucopolysaccharidoses (MPS) are rare lysosomal disorders caused by the deficiency of specific lysosomal enzymes responsible for glycosaminoglycan (GAG) degradation. Enzyme Replacement Therapy (ERT) has been shown to reduce accumulation and urinary excretion of GAG, and to improve some of the patients' clinical signs. We studied biochemical and molecular characteristics of nine MPS patients (two MPS I, four MPS II and three MPS VI) undergoing ERT in northern Brazil. The responsiveness of ERT was evaluated through urinary GAG excretion measurements. Patients were screened for eight common MPS mutations, using PCR, restriction enzyme tests and direct sequencing. Two MPS I patients had the previously reported mutation p.P533R. In the MPS II patients, mutation analysis identified the mutation p.R468W, and in the MPS VI patients, polymorphisms p.V358M and p.V376M were also found. After 48 weeks of ERT, biochemical analysis showed a significantly decreased total urinary GAG excretion in patients with MPS I (p < 0.01) and MPS VI (p < 0.01). Our findings demonstrate the effect of ERT on urinary GAG excretion and suggest the adoption of a screening strategy for genotyping MPS patients living far from the main reference centers.  相似文献   

18.
Summary Heterokaryons were made by fusion of -l-iduronidase-deficient fibroblasts from patients with the Hurler, Scheie, or Hurler/Scheie compound syndrome. The fused cell populations remained -l-iduronidase deficient and accumulated 35S-labeled glycosaminoglycans (35S-GAG) to the same extent as the parental cell strains. Also, when 35S-GAG accumulation was studied by autoradiography at the level of single bi-and multinuclear hybrid cells, no evidence was found for genetic complementation.The results support the hypothesis that the mutations in the Hurler and Scheie syndromes are allelic, and they are compatible with the view that patients with intermediate phenotypes represent genetic compounds.  相似文献   

19.
20.
The catalytic reaction mechanism and binding of substrates was investigated for the multisubstrate Drosophila melanogaster deoxyribonucleoside kinase. Mutation of E52 to D, Q and H plus mutations of R105 to K and H were performed to investigate the proposed catalytic reaction mechanism, in which E52 acts as an initiating base and R105 is thought to stabilize the transition state of the reaction. Mutant enzymes (E52D, E52H and R105H) showed a markedly decreased k(cat), while the catalytic activity of E52Q and R105K was abolished. The E52D mutant was crystallized with its feedback inhibitor dTTP. The backbone conformation remained unchanged, and coordination between D52 and the dTTP-Mg complex was observed. The observed decrease in k(cat) for E52D was most likely due to an increased distance between the catalytic carboxyl group and 5'-OH of deoxythymidine (dThd) or deoxycytidine (dCyd). Mutation of Q81 to N and Y70 to W was carried out to investigate substrate binding. The mutations primarily affected the K(m) values, whereas the k(cat) values were of the same magnitude as for the wild-type. The Y70W mutation made the enzyme lose activity towards purines and negative cooperativity towards dThd and dCyd was observed. The Q81N mutation showed a 200- and 100-fold increase in K(m), whereas k(cat) was decreased five- and twofold for dThd and dCyd, respectively, supporting a role in substrate binding. These observations give insight into the mechanisms of substrate binding and catalysis, which is important for developing novel suicide genes and drugs for use in gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号