首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to determine the effect of bacterial proteinases on activation of the protein C system, a negative regulator of blood coagulation, two arginine-specific cysteine proteinases (gingipains R) from Porphyromonas gingivalis, a causative bacterium of adult periodontitis, were examined. Each enzyme activated human protein C in a dose- and incubation time-dependent manner. Interestingly, the form of enzyme being composed of a non-covalent complex containing both catalytic and adhesion domains (RgpA) produced activated protein C 14-fold more efficiently than RgpB which contained the catalytic domain alone. The kcat/Km value of RgpA was 18-fold higher than that of RgpB and comparable to that of the thrombin-thrombomodulin complex, the physiological activator of protein C. RgpA catalyzed protein C activation was augmented 1.4-fold by phospholipids, ubiquitous cell membrane components. Furthermore, RgpA, but not RgpB, could activate protein C in plasma and this resulted in a decrease of the protein C concentration in plasma, which is often observed in patients with sepsis during the development of disseminated intravascular coagulation (DIC). These data indicate that RgpA is a more potent activator of protein C than RgpB and suggest that only the former enzyme can cause protein C activation in vivo. The present study further suggests that bacterial proteinases may possibly contribute to the consumption of plasma protein C which predisposes to DIC and/or promotes a thrombotic tendency towards DIC in sepsis.  相似文献   

2.
Cysteine proteinases (gingipains) elaborated from Porphyromonas gingivalis exhibit enzymatic activities against a broad range of host proteins and are considered key virulence factors in the onset and development of adult periodontitis and host defense evasion. In this study, we examined the ability of arginine-specific gingipains (high molecular mass Arg-specific gingipain (HRGP) and Arg-specific gingipain 2) and lysine-specific gingipain (KGP) to cleave monocyte CD14, the main receptor for bacterial cell surface components such as LPS. Binding of anti-CD14 mAb MY4 to human monocytes was almost completely abolished by 0.3 microM HRGP and KGP treatments for 15 min, and 1 microM RGP2 for 30 min. In contrast, the expressions of Toll-like receptor 4, and CD18, CD54, CD59, and HLA-A, -B, -C on monocytes were slightly increased and decreased, respectively, by 0. 3 microM HRGP and KGP. This down-regulation resulted from direct proteolysis, because 1) gingipains eliminated MY4 binding even to fixed monocytes, and 2) CD14 fragments were detected in the extracellular medium by immunoblot analysis. Human rCD14 was degraded by all three gingipains, which confirmed that CD14 was a substrate for gingipains. TNF-alpha production by monocytes after HRGP and KGP treatments was decreased at 1 ng/ml, but not at 20 microg/ml LPS, indicating that gingipains inhibited a CD14-dependent cell activation. These results suggest that gingipains preferentially cleave monocyte CD14, resulting in attenuation of the cellular recognition of bacteria, and as a consequence sustain chronic inflammation.  相似文献   

3.
Arginine-specific cysteine proteinase (Arg-gingipain [RGP], a major proteinase secreted from the oral anaerobic bacterium Porphyromonas gingivalis, is encoded by two separate genes (rgpA and rgpB) on the P. gingivalis chromosome and widely implicated as an important virulence factor in the pathogenesis of periodontal disease (K. Nakayama, T. Kadowaki, K. Okamoto, and K. Yamamoto, J. Biol. Chem. 270:23619-23626, 1995). In this study, we investigated the role of RGP in the formation of P. gingivalis fimbriae which are thought to mediate adhesion of the organism to the oral surface by use of the rgp mutants. Electron microscopic observation revealed that the rgpA rgpB double (RGP-null) mutant possessed very few fimbriae on the cell surface, whereas the number of fimbriae of the rgpA or rgpB mutant was similar to that of the wild-type parent strain. The rgpB+ revertants that were isolated from the double mutant and recovered 20 to 40% of RGP activity of the wild-type parent possessed as many fimbriae as the wild-type parent, indicating that RGP significantly contributes to the fimbriation of P. gingivalis as well as to the degradation of various host proteins, disturbance of host defense mechanisms, and hemagglutination. Immunoblot analysis of cell extracts of these mutants with antifimbrilin antiserum revealed that the rgpA rgpB double mutant produced small amounts of two immunoreactive proteins with molecular masses of 45 and 43 kDa, corresponding to those of the precursor and mature forms of fimbrilin, respectively. The result suggests that RGP may function as a processing proteinase for fimbrilin maturation. In addition, a precursor form of the 75-kDa protein, one of the major outer membrane proteins of P. gingivalis, was accumulated in the rgpA rgpB double mutant but not in the single mutants and the revertants, suggesting an extensive role for RGP in the maturation of some of the cell surface proteins.  相似文献   

4.
RgpB, a cysteine proteinase produced by Porphyromonas gingivalis, exhibits proteolytic activity selectively directed against peptide bonds containing an arginine residue in the P1 position. Here we show that this enzyme can be used for very efficient and specific protein cleavage. RgpB is highly active even at high concentrations of denaturing agents, including urea (up to 6 M) and SDS (0.1%), both of them being commonly used for solubilization of insoluble proteins and peptides. Moreover, RgpB is able to digest polypeptide chains in buffers supplemented with 1% Triton X-100, 1% octyl or decylpyranoside, detergents employed for the enzymatic digestion of proteins transferred onto nitrocellulose membranes. These features render RgpB a suitable tool for use in protein chemistry.  相似文献   

5.
Deregulation of the cytokine network is an important adaptation of pathogenic bacteria to modulate and evade a host immune response. Here we describe that IL-6 is rapidly and efficiently cleaved and inactivated by the arginine- and lysine-specific proteinases from Porphyromonas gingivalis, referred to as RGP-A, RGP-B, and KGP. One of the primary cleavage sites for RGPs has been mapped between R18 and Q19 within the N-terminal region of the IL-6 polypeptide chain; however, both KGP and RGPs cleave IL-6 within the C-terminal region of the polypeptide chain. After these initial proteolytic cleavages, IL-6 is further degraded by each of the enzymes tested. Although KGP is the most potent IL-6-degrading proteinase, the initial C-terminal cleavage of IL-6 mediated by all gingipains is already sufficient to inactivate this cytokine. Our data are consistent with the observation that in periodontitis the IL-6 concentration is lowest in the gingival tissue adjacent to bacterial plaque, whereas significantly elevated concentrations of this cytokine are detected around the infected area. Degradation of IL-6 by gingipains may, therefore, represent an additional mechanism which influences the balance between pro- and anti-inflammatory reactions at distal versus proximal sites from the periodontal plaque.  相似文献   

6.
7.
8.
Complement components C3 and C5 are susceptible to limited proteolysis by an arginine-specific cysteine proteinase isolated from Porphyromonas gingivalis. This bacterium is an anaerobe commonly associated with severe periodontal disease. Infection by P. gingivalis is accompanied by an acute inflammatory response, complete with extensive neutrophil involvement. This prompted us to investigate a possible direct role for complement in periodontitis evoked by P. gingivalis. Exposure of C3 and C5 to the cysteine proteinase at molar ratios between 1:25 and 1:100 (enzyme to substrate ratios) resulted in a time-dependent, limited degradation of each component. C3 was converted in a stepwise manner to C3a-like and C3b-like fragments with evidence of extensive further degradation of the C3a-like portion of the molecule. We were unable to demonstrate C3a activity in the C3 digestion mixtures. C3 degradation appears to involve primarily the alpha-chain. Proteolysis of C5 also progresses in a stepwise manner producing an initial internal cleavage of the alpha-chain to generate 30- and 86-kDa fragments. Further digestion of the 86-kDa amino-terminal fragment of the alpha-chain leads to the release of C5a or a C5a-like fragment that is biologically active for neutrophil activation. The fact that a potent chemotactic factor, i.e. C5a, can be generated from C5 by a proteinase derived from P. gingivalis suggests a recruiting mechanism for attracting neutrophils to the gingival lesion site in periodontal disease.  相似文献   

9.
Osteoprotegerin (OPG) is a key regulator of osteoclastogenesis during the progression of periodontitis. Recent reports suggest that osteoprotegerin may also prevent arterial calcification and contribute to endothelial cell survival. To determine whether the vascular functions of osteoprotegerin are involved in periodontitis, we examined whether osteoprotegerin contributed to the survival of endothelial cells damaged by Porphyromonas gingivalis cysteine proteinases (gingipains). Gingipain proteinases cleave a broad range of host proteins, and are important virulence factors of P. gingivalis, a major causative bacterium of adult periodontitis. Human microvascular endothelial cells (HMVEC) were exposed to activated gingipain extracts from P. gingivalis 381, with and without pretreatment with osteoprotegerin. Cell viability was quantified by the tetrazolium (WST-8) reduction assay, and apoptosis was examined using Hoechst 33342 nuclear staining. After 16 h of treatment with activated gingipain extracts, HMVEC showed near-complete detachment from the tissue culture dish, and apoptosis was evident by 24 h. Pretreatment of HMVEC with osteoprotegerin reduced the extent of both cellular detachment and apoptotic cell death. Our results indicated that osteoprotegerin pretreatment protected HMVEC against detachment and apoptotic cell death induced by gingipain-active bacterial cell extracts. These results also suggest that osteoprotegerin may function as a survival factor for endothelial cells during periodontitis.  相似文献   

10.
Porphyromonas gingivalis can use hemoglobin bound to haptoglobin and heme complexed to hemopexin as heme sources; however, the mechanism by which hemin is released from these proteins has not been defined. In the present study, using a variety of analytical methods, we demonstrate that lysine-specific cysteine proteinase of P. gingivalis (gingipain K, Kgp) can efficiently cleave hemoglobin, hemopexin, haptoglobin, and transferrin. Degradation of hemopexin and transferrin in human serum by Kgp was also detected; however, we did not observe extensive degradation of hemoglobin in serum by Kgp. Likewise the beta-chain of haptoglobin was partially protected from degradation by Kgp in a haptoglobin-hemoglobin complex. Arginine-specific gingipains (gingipains R) were also found to degrade hemopexin and transferrin in serum; however, this was observed only at relatively high concentrations of these enzymes. Growth of P. gingivalis strain A7436 in a minimal media with normal human serum as a source of heme correlated not only with the ability of the organism to degrade hemoglobin, haptoglobin, hemopexin, and transferrin but also with an increase in gingipain K and gingipain R activity. The ability of gingipain K to cleave hemoglobin, haptoglobin, and hemopexin may provide P. gingivalis with a usable source of heme for growth and may contribute to the proliferation of P. gingivalis within periodontal pockets in which erythrocytes are abundant.  相似文献   

11.
The crystal structure of cambialistic superoxide dismutase (SOD) from Porphyromonas gingivalis, which exhibits full activity with either Fe or Mn at the active site, has been determined at 1.8-A resolution by molecular replacement and refined to a crystallographic R factor of 17.9% (Rfree 22.3%). The crystals belong to the space group P212121 (a = 75.5 A, b = 102.7 A, c = 99.6 A) with four identical subunits in the asymmetric unit. Each pair of subunits forms a compact dimer, but not a tetramer, with 222 point symmetry. Each subunit has 191 amino-acid residues most of which are visible in electron density maps, and consists of seven alpha helices and one three-stranded antiparallel beta sheet. The metal ion, a 3 : 1 mixture of Fe and Mn, is coordinated with five ligands (His27, His74, His161, Asp157, and water) arranged at the vertices of a trigonal bipyramid. Although the overall structural features, including the metal coordination geometry, are similar to those found in other single-metal containing SODs, P. gingivalis SOD more closely resembles the dimeric Fe-SODs from Escherichia coli rather than another cambialistic SOD from Propionibacterium shermanii, which itself is rather similar to other tetrameric SODs.  相似文献   

12.
The activation of human prothrombin by the bacterial protein staphylocoagulase proceeds via the formation of a very stable equimolar complex. Unmasking of the active center in the prothrombin moiety of the complex is not caused by limited proteolysis. The kinetics of activation of human prothrombin by staphylocoagulase has been studied. The second order rate constant at pH 7.5, 37 degrees C, is 3.3 X 10(6) M-1 S-1. This reaction rate is close to reported diffusion-controlled rates of protein-protein interaction. The dissociation constant of the complex was too low to be measurable. From the kinetic data it is assumed that the first order rate constant for dissociation is orders of magnitude less than 10(-5) S-1. However, dissociation of the complex did occur in the presence of sodium dodecyl sulfate. Equimolar amounts of staphylocoagulase protect human thrombin, but not human factor Xa and bovine thrombin, against inactivation by antithrombin III. From these findings we postulate that tertiary structural changes in the thrombin region of prothrombin caused by a highly specific interaction between staphylocoagulase and that region unmask the active site.  相似文献   

13.
Inhibition of cysteine proteinases by a protein inhibitor from potato   总被引:2,自引:0,他引:2  
The inhibitory specificity of a protein from potato tubers that inhibits cysteine proteinases (potato cysteine proteinase inhibitor, PCPI) has been compared with that of chicken egg-white cystatin. Most proteinases that are inhibited by cystatin were also inhibited by PCPI, but the potato inhibitor inhibited stem bromelain and fruit bromelain, which are not inhibited by cystatin, and for which no protein inhibitor of comparable potency has previously been described. In contrast, papaya proteinase IV was unaffected by PCPI as it is by the cystatins, and the exopeptidase, dipeptidyl peptidase I, is inhibited by cystatins, but was unaffected by PCPI. The differences in inhibitory specificity between these proteins may well reflect differences between superfamilies of cysteine proteinase inhibitors.  相似文献   

14.
The role of serine proteinases and oxidants in the activation of gelatinase released from human neutrophils was investigated. Gelatinase was measured by its ability to degrade both gelatin and native glomerular basement-membrane type IV collagen. When fMet-Leu-Phe or phorbol 12-myristate 13-acetate was used to stimulate the neutrophils, no gelatinase activity was measured in the absence of a mercurial activator, indicating that the enzyme was released entirely in latent form. However, when fMet-Leu-Phe-stimulated cells were treated with cytochalasin B, 50-70% of the maximal gelatinase activity was released. Activation was blocked by the serine-proteinase inhibitor phenylmethanesulphonyl fluoride and a specific inhibitor of neutrophil elastase, but was not affected by an inhibitor of cathepsin G. Addition of catalase or azide to prevent oxidative reactions did not affect activation of gelatinase under any conditions of stimulation, indicating that oxidants were not involved in activation. Our results imply that oxidative activation of gelatinase does not occur readily. However, neutrophil serine proteinases, particularly elastase, provide an alternative and apparently more efficient mechanism of activation.  相似文献   

15.
Heme binding and uptake are considered fundamental to the growth and virulence of the gram-negative periodontal pathogen Porphyromonas gingivalis. We therefore examined the potential role of the dominant P. gingivalis cysteine proteinases (gingipains) in the acquisition of heme from the environment. A recombinant hemoglobin-binding domain that is conserved between two predominant gingipains (domain HA2) demonstrated tight binding to hemin (Kd = 16 nM), and binding was inhibited by iron-free protoporphyrin IX (Ki = 2.5 microM). Hemoglobin binding to the gingipains and the recombinant HA2 (rHA2) domain (Kd = 2.1 nM) was also inhibited by protoporphyrin IX (Ki = 10 microM), demonstrating an essential interaction between the HA2 domain and the heme moiety in hemoglobin binding. Binding of rHA2 with either hemin, protoporphyrin IX, or hematoporphyrin was abolished by establishing covalent linkage of the protoporphyrin propionic acid side chains to fixed amines, demonstrating specific and directed binding of rHA2 to these protoporphyrins. A monoclonal antibody which recognizes a peptide epitope within the HA2 domain was employed to demonstrate that HA2-associated hemoglobin-binding activity was expressed and released by P. gingivalis cells in a batch culture, in parallel with proteinase activity. Cysteine proteinases from P. gingivalis appear to be multidomain proteins with functions for hemagglutination, erythrocyte lysis, proteolysis, and heme binding, as demonstrated here. Detailed understanding of the biochemical pathways for heme acquisition in P. gingivalis may allow precise targeting of this critical metabolic aspect for periodontal disease prevention.  相似文献   

16.
Bombyx cysteine proteinase inhibitor (BCPI) is a novel cysteine proteinase inhibitor. The protein sequence is homologous to the proregions of certain cysteine proteinases. Here we report the mechanism of its inhibition of several cysteine proteinases. BCPI strongly inhibited Bombyx cysteine proteinase (BCP) activity with a K(i) = 5.9 pM, and human cathepsin L with a K(i) = 36 pM. The inhibition obeyed slow-binding kinetics. The inhibition of cathepsin H was much weaker (K(i) = 82 nM), while inhibition of papain (K(i) > 1 microM) and cathepsin B (K(i) > 4 microM) was negligible. Following incubation with BCP, BCPI was first truncated at the C-terminal end, and then gradually degraded over time. The truncation mainly involved two C-terminal amino acid residues. Recombinant BCPI lacking the two C-terminal amino acid residues still retained substantial inhibitory activity. Our results indicate that BCPI is a stable and highly selective inhibitor of cathepsin L-like cysteine proteinases.  相似文献   

17.
Abstract Bacitracin affinity chromatography has been used to purify proteinases of the parasitic protozoon Tritrichomonas foetus . It proved superior to other affinity chromatography methods we have tested for the purification of trichomonad proteinases and should prove a useful procedure for purifying cysteine proteines from these parasites and other parasitic protozoa. The main cysteine proteinases of T. foetus were purified over 100-fold to be free from the majority of other cell proteins. About 90 μg of protein containing 1.56-fold more proteinase activity than was detectable in the original cell lysate was obtained from 109 cells (7.2 mg protein). SDS-PAGE revealed that the eluate contained two main Coomassie blue-staining bands. N-terminal amino acid sequence analysis of these proteins confirmed that one of them was a cysteine proteinase with unusuall features. Cysteine proteinases were also purified from cell lysates of Trichomonas vaginalis and a N-terminal sequence determined. This is the first amino acid sequence information that has been obtained for trichomonad cysteine proteinases. The method was also used to purify proteinases from the medium of T. foetus cultures. Some selectivity in binding of the proteinases to the affinity column was found.  相似文献   

18.
Purification of cysteine proteinases from adult Schistosoma mansoni   总被引:5,自引:0,他引:5  
Proteolytic activity against hemoglobin and low molecular weight synthetic substrates has been previously found in homogenates and excretion/secretion products of adult Schistosoma mansoni worms. This activity is stimulated in the presence of thiol compounds and is maximally active at acidic pH. To characterize further this proteolytic activity, lyophilized adult worms were extracted, and proteinases were isolated and purified. From extracts prepared in 0.2 M citrate buffer, pH 4.9, two proteinase species were purified to homogeneity by centrifugation, gel filtration, dialysis, and chromatofocusing chromatography. The proteinases, designated SMw32 and SMw28, have apparent molecular weights (SDS-PAGE) of 31,700 +/- 1400 and 27,800 +/- 1700, respectively. Both are thiol-dependent, acidic endopeptidases that cleave hemoglobin and a synthetic substrate, CBZ-arg-arg-AFC. A statistical comparison of amino acid compositions reveals that the proteinases are highly related.  相似文献   

19.
Two cDNA clones for plant cysteine proteinases have been isolated from a Carica papaya (paw-paw, papaya) leaf tissue cDNA library by using a mixture of 16 synthetic oligodeoxyribonucleotides as a hybridization probe. The inserted regions are 311 and 440 base-pairs in length and have the potential to encode a region corresponding to the C-terminal region of two proteins which are homologous with the known plant cysteine proteinases and the mammalian thiol cathepsins. One of the sequences shows a high (greater than 77%) homology with the plant cysteine proteinase papain, the other is closely related to papaya chymopapain. One sequence contains all, and the other most, of the 3' untranslated region of the mRNA. The inserts were used as specific probes in Northern Blot analyses giving an estimated size for the two mRNA species of 1.45 kilobases.  相似文献   

20.
Human tissue extracts contained two high Mr proteinases active in hydrolyzing the fluorogenic substrate Cbz-phe-arg-aminomethylcoumarin. By gel filtration chromatography, cathepsins J and K had apparent molecular weights of 230,000 and 650,000, respectively. Both enzymes were cysteine proteinases with optimum activity at pH 6.2-6.8; neither had aminopeptidase activity. Human kidney, lung and spleen were rich sources of these enzymes, while liver contained moderate amounts. Cathepsins J and K were partially characterized and appeared to differ from the mammalian high Mr cysteine proteinases described in the literature. In rat liver and kidney and in mouse liver, cathepsin J was localized in the particulate fraction, whereas cathepsin K was not detected in these tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号