首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Based on previous in vivo genetic analysis of bacteriophage lambda growth, we have developed two in vitro lambda DNA replication systems composed entirely of purified proteins. One is termed 'grpE-independent' and consists of supercoiled lambda dv plasmid DNA, the lambda O and lambda P proteins, as well as the Escherichia coli dnaK, dnaJ, dnaB, dnaG, ssb, DNA gyrase and DNA polymerase III holoenzyme proteins. The second system includes the E.coli grpE protein and is termed 'grpE-dependent'. Both systems are specific for plasmid molecules carrying the ori lambda DNA initiation site. The major difference in the two systems is that the 'grpE-independent' system requires at least a 10-fold higher level of dnaK protein compared with the grpE-dependent one. The lambda DNA replication process may be divided into several discernible steps, some of which are defined by the isolation of stable intermediates. The first is the formation of a stable ori lambda-lambda O structure. The second is the assembly of a stable ori lambda-lambda O-lambda P-dnaB complex. The addition of dnaJ to this complex also results in an isolatable intermediate. The dnaK, dnaJ and grpE proteins destabilize the lambda P-dnaB interaction, thus liberating dnaB's helicase activity, resulting in unwinding of the DNA template. At this stage, a stable DNA replication intermediate can be isolated, provided that the grpE protein has acted and/or is present. Following this, the dnaG primase enzyme recognizes the single-stranded DNA-dnaB complex and synthesizes RNA primers. Subsequently, the RNA primers are extended into DNA by DNA polymerase III holoenzyme. The proposed model of the molecular series of events taking place at ori lambda is substantiated by the many demonstrable protein-protein interactions among the various participants.  相似文献   

2.
A soluble enzyme system that specifically initiates lambda dv plasmid DNA replication at a bacteriophage lambda replication origin [Wold et al. (1982) Proc. Natl. Acad. Sci. USA 79, 6176-6180] is also capable of replicating the single-stranded circular chromosomes of phages M13 and phi X174 to a duplex form. This chain initiation on single-stranded templates is novel in that it is absolutely dependent on the lambda O and P protein chromosomal initiators and on several Escherichia coli proteins that are known to function in the replication of the lambda chromosome in vivo, including the host dnaB, dnaG (primase), dnaJ and dnaK replication proteins. Strand initiation occurs at multiple sites following an O and P protein-dependent pre-priming step in which the DNA is converted into an activated nucleoprotein complex containing the bacterial dnaB protein. We propose a scheme for the initiation of DNA synthesis on single-stranded templates in this enzyme system that may be relevant to strand initiation events that occur during replication of phage lambda in vivo.  相似文献   

3.
The Escherichia coli dnaJ gene was originally discovered because mutations in it blocked bacteriophage lambda DNA replication. Some of these mutations were subsequently shown to interfere with bacterial growth at high temperature, suggesting that dnaJ is an essential protein for the host as well. The first step in purifying the dnaJ protein was to overproduce it at least 50-fold by subcloning its gene into the pMOB45 runaway plasmid. The second step was the development of an in vitro system to assay for its activity. A Fraction II extract from dnaJ259 mutant bacteria was shown to be unable to replicate lambda dv DNA unless supplemented with an exogenous source of wild-type dnaJ protein. Using this complementation assay we purified the dnaJ protein to homogeneity from the membrane fraction of an overproducing strain of bacteria. The purified dnaJ protein was shown to be a basic (pI 8.5), yet hydrophobic, protein of Mr 37,000 and 76,000 under denaturing and native conditions, respectively, and to exhibit affinity for both single- and double-stranded DNA. Using a partially purified lambda dv replication system dependent on the presence of the lambda O and P initiator proteins and at least the host dnaB, dnaG, dnaJ, dnaK, single-stranded DNA-binding protein, gyrase, RNA polymerase holoenzyme, and DNA polymerase III holoenzyme, we have shown that the dnaJ protein is required at a very early step in the DNA replication process.  相似文献   

4.
5.
Initiation of replication of lambda DNA requires assembly of the proper nucleoprotein complex consisting of the lambda origin of replication-lambda O-lambda P-dnaB proteins. The dnaJ, dnaK and grpE heat shock proteins destabilize the lambda P-dnaB interaction in this complex permitting dnaB helicase to unwind lambda DNA near ori lambda sequence. First step of this disassembling reaction is the binding of dnaK protein to lambda P protein. In this report we examined the influence of dnaJ and grpE proteins on stability of the lambda P-dnaK complex. Our results show that grpE alone dissociates this complex, but both grpE and dnaJ together do not. These results suggest that, in the presence of grpE protein, dnaK protein has a higher affinity for lambda P protein complexed with dnaJ protein than in the situation where grpE protein is not used.  相似文献   

6.
Using highly purified bacteriophage lambda and E. coli replication proteins, we were able to reconstitute an in vitro system capable of replication ori lambda-containing plasmid DNA. The addition of a new E. coli factor, the grpE gene product, to this replication system reduced the level of dnaK protein required for efficient DNA synthesis by at least 10-fold, and also allowed the isolation of a stable DNA replication intermediate. Based on all available information, we propose a molecular mechanism for the action of the dnaK and grpE proteins during the prepriming reaction leading to lambda DNA synthesis.  相似文献   

7.
The phage P22 gene 12 protein was found to be like the Escherichia coli dnaB protein in that it stimulated phiX174 DNA synthesis in heat-inactivated extracts of dnaB temperature-sensitive cells (see preceding paper, Wickner, S. (1984) J. Biol. Chem. 259, 14038-14043). phiX174 replication catalyzed by the purified P22 12 protein also by-passed the normal requirement for dnaC protein. However, synthesis still required dnaG primase and the DNA polymerase III holoenzyme components. This DNA synthesis reaction has been reconstituted with purified proteins and found to require P22 12 protein, dnaG protein, DNA polymerase III holoenzyme components, 4 dNTPs, Mg2+, any one of ATP, GTP, UTP, or CTP and single-stranded DNA. The reaction has been dissected into partial reactions: (a) in a prepriming reaction, P22 12 protein binds to single-stranded DNA in an ATP-dependent reaction (Wickner, S. (1984) J. Biol. Chem. 259, 14038-14043); (b) in a priming reaction requiring at least one rNTP and the other dNTPs or rNTPs, dnaG primase catalyzes oligonucleotide synthesis dependent on the P22 12 protein-DNA complex; (c) finally, DNA polymerase III holoenzyme components catalyze DNA elongation of the primer.  相似文献   

8.
Conversion of the viral DNA of phage G4 to the duplex form provided an opportunity to isolate and determine the function of the dnaG protein, the product of a gene known to be essential for replication of the Escherichia coli chromosome. This stage of G4 DNA replication requires action of three proteins: the E. coli DNA-binding protein, the dnaG protein, and the DNA polymerase III holoenzyme. The dnaG protein has been purified approximately 25,000-fold to near-homogeneity. The native protein contains a single polypeptide of 60,000 daltons. It has been assayed for its activity on G4 DNA in three ways: (a) RNA synthesis, (b) complementation for replication of an extract of a temperature-sensitive dnaG mutant, and (c) priming of DNA replication by DNA polymerase III holoenzyme. The dnaG protein is highly specific for G4 DNA and synthesizes a unique 29-residue RNA primer to be described in the suceeding paper. Other single-stranded and duplex DNA templates are inactive. RNA primer synthesis by the dnaG protein has an apparent Km for ribonucleoside triphosphates near 10 micrometer, and a narrow optimum for Mg2+. The sharp specificity of the dnaG protein in choice of template and the utilization of either deoxyribonucleotides or ribonucleotides to produce a hybrid piece only a few residues long (as described in a succeeding paper) suggests that the dnaG protein previously named RNA polymerase by renamed primase.  相似文献   

9.
The requirements for growth of bacteriophage lambda containing the deoxyribonucleic acid replication region from Salmonella phage P22 were determined in a burst size experiment. The products of genes dnaE, dnaJ, dnaK, dnaY, dnaZ, and seg were required, but not the products of genes dnaA, dnaB, dnaC, and dnaX. This lambda-P22 hybrid phage was also dependent on polA for growth at 32 degrees C.  相似文献   

10.
11.
A modified in vitro replication system has been characterized and used to catalogue the host proteins required for the replication of plasmid RSF1030. These extracts differ from systems described previously in that endogenous DNA is removed. Replication in vitro therefore requires an exogenouos RSF1030. Synthesis in the in vitro system faithfully mimics in vivo replication with respect to the products synthesized, effects of specific inhibitors, and requirements for RNA polymerase and DNA polymerase I. In addition, we find that proteins encoded by dnaB, dnaC, dnaG, dnaI, dnaP and polC (DNA polymerase III), are required for in vitro plasmid synthesis. The product of dnaA is not required. Extracts prepared from E. coli mutants deficient in in vitro replication can be complemented by addition of purified proteins or of extracts carrying the wild type protein.  相似文献   

12.
Bacteriophages G4ev1 and G4bs1 are simple temperature-resistant derivatives of wild-type G4 as demonstrated by restriction endonuclease analyses. The rate of replication of the duplex replicative-form DNA of these phages was normal in dnaB and dnaC mutants of the host, whereas the rate was markedly reduced in a dnaG host mutant at the restrictive temperature. We conclude that G4 duplex DNA replication requires the host cell dnaG protein, but not the dnaB and dnaC proteins. The reasons for the differences between our conclusions and those based on previously published data are documented and discussed.  相似文献   

13.
The primosome is a mobile multiprotein DNA replication-priming apparatus that requires seven Escherichia coli proteins (replication factor Y (protein n'), proteins n and n", and the products of the dnaB, dnaC, dnaT, and dnaG genes) for assembly at a specific site (termed a primosome assembly site) on single-stranded DNA binding protein-coated single-stranded DNA. Two of the protein components of the primosome have intrinsic DNA helicase activity. The DNA B protein acts in the 5'----3' direction, whereas factor Y acts in the 3'----5' direction. The primosome complex has DNA helicase activity when present at a replication fork in conjunction with the DNA polymerase III holoenzyme. In this report, evidence is presented that the multiprotein primosome per se can act as a DNA helicase in the absence of the DNA polymerase III holoenzyme. The primosome DNA helicase activity can be manifested in either direction along the DNA strand. The directionality of the primosome DNA helicase activity is modulated by the concentration and type of nucleoside triphosphate present in the reaction mixture. This DNA helicase activity requires all the preprimosomal proteins (the primosomal proteins minus the dnaG-encoded primase). Preprimosome complexes must assemble at a primosome assembly site in order to be loaded onto the single-stranded DNA and act subsequently as a DNA helicase. The 5'----3' primosome DNA helicase activity requires a 3' single-stranded tail on the fragment to be displaced, while the 3'----5' activity does not require a 5' single-stranded tail on the fragment to be displaced. Multienzyme preprimosomes moving in either direction are capable of associating with the primase to form complete primosomes that can synthesize RNA primers.  相似文献   

14.
The prepriming steps in the initiation of bacteriophage lambda DNA replication depend on the action of the lambda O and P proteins and on the DnaB helicase, single-stranded DNA binding protein (SSB), and DnaJ and DnaK heat shock proteins of the E. coli host. The binding of multiple copies of the lambda O protein to the phage replication origin (ori lambda) initiates the ordered assembly of a series of nucleoprotein structures that form at ori lambda prior to DNA unwinding, priming and DNA synthesis steps. Since the initiation of lambda DNA replication is known to occur only on supercoiled templates in vivo and in vitro, we examined how the early steps in lambda DNA replication are influenced by superhelical tension. All initiation complexes formed prior to helicase-mediated DNA-unwinding form with high efficiency on relaxed ori lambda DNA. Nonetheless, the DNA templates in these structures must be negatively supertwisted before they can be replicated. Once DNA helicase unwinding is initiated at ori lambda, however, later steps in lambda DNA replication proceed efficiently in the absence of superhelical tension. We conclude that supercoiling is required during the initiation of lambda DNA replication to facilitate entry of a DNA helicase, presumably the DnaB protein, between the DNA strands.  相似文献   

15.
16.
The sog gene of the IncI alpha group plasmid ColIb is known to encode a DNA primase that can substitute for defective host primase in dnaG mutants of Escherichia coli during discontinuous DNA replication. The biological significance of this enzyme was investigated by using sog mutants, constructed from a derivative of ColIb by in vivo recombination of previously defined mutations in a cloned sog gene. The resultant Sog- plasmids failed to specify detectable primase activity and were unable to suppress a dnaG lesion. These mutants were maintained stably in E. coli, implying that the enzyme is not involved in vegetative replication of ColIb. However, the Sog- plasmids were partially transfer deficient in E. coli and Salmonella typhimurium matings, consistent with the hypothesis that the normal physiological role of this enzyme is in conjugation. This was confirmed by measurements of conjugal DNA synthesis. Studies of recipient cells have indicated that plasmid primase is required to initiate efficient synthesis of DNA complementary to the transferred strand, with the protein being supplied by the donor parent and probably transmitted between the mating cells. Primase specified by the dnaG gene of the recipient can substitute partially for the mutant enzyme, thus providing an explanation for the partial transfer proficiency of the mutant plasmids. Conjugal DNA synthesis in dnaB donor cells was deficient in the absence of plasmid primase, implying that the enzyme also initiates synthesis of DNA to replace the transferred material.  相似文献   

17.
We have directly tested the effects of host cell DNA synthesis mutations on bacteriophage phiK replicative-form (RF) DNA replication in vivo. We observed that phiK RF DNA replication continued at normal rates in both dnaB and dnaC mutant hosts under conditions in which the activities of the dnaB and dnaC gene products were shown to be markedly reduced. This suggests that these two host proteins are not essential for normal phiK RF DNA replication. In control experiments we observed markedly reduced rates of phiK RF DNA replication in temperature-sensitive dnaG and dnaE host mutants, indicating that the products of these genes are essential. Thus, the mechanism of DNA chain initiation in vivo on the duplex RF DNA templates of isometric phages such as phiK apparently is different from that on the similar templates of isometric phages such as phiX174. The implications of this difference are discussed in the text.  相似文献   

18.
Purification and properties of the Escherichia coli dnaK replication protein   总被引:37,自引:0,他引:37  
The Escherichia coli dnaK+ gene was cloned into the "runaway" plasmid vector pMOB45 resulting in a large overproduction of the dnaK protein. The dnaK protein was purified by following its ability to complement the replication of single-stranded M13 bacteriophage DNA in a reaction system dependent on the presence of the lambda O and P DNA replication proteins. The DNA replication activity of the dnaK protein is also essential for lambda dv DNA replication in vitro, since antibodies against it were shown to inhibit the reaction. Purified dnaK protein preparations possess a weak ATPase activity and an autophosphorylating activity which copurify with its DNA replication activity throughout all purification steps. The dnaK protein is an acidic largely monomeric protein of Mr = 72,000 and 78,400 under denaturing and native conditions, respectively. The amino acid composition and N-terminal amino acid sequence match those predicted from the DNA sequence of the dnaK gene (Bardwell, J.C.A., and Craig, E. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 848-852).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号