首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analytical method for the detection in biological samples of the novel tricyclic compound adosupine (10-acetoamido-5-methyl-5,6-dihydro-11H-dibenzo[b,e]azepin-6,11-dione), which is capable of influencing various forms of urinary bladder hyperreflexia has been developed using high-performance liquid chromatography with UV detection. Liquid—liquid extraction was used to isolate the parent compound, three metabolites and an analogue (added as internal standard) from plasma and brain of rat. Adosupine was well separated from its three metabolites with 0.01 M disodium hydrogenphosphate—acetonitrile—methanol—nonylamine (59.986:38:2:0.014) at pH 4.5 as mobile phase using a C18 reversed-phase column. The standard curves were linear in the range 50–5000 ng/ml (or ng/g) for adosupine and metabolites in both plasma and brain. The between- and within-assay variations for high and low concentrations of the parent compound and the three metabolites were 8.2–14%. In the range 50–5000 ng/ml (or ng/g) the accuracy of the method was satisfactory, with the relative error always lower than 10%. Analytical recoveries of added adosupine and the three metabolites were higher than 82%. The method has been applied successfully, to investigate the pharmacokinetics of the drug and its distribution in the central nervous system of rats.  相似文献   

2.
A fully automated analytical system based on liquid—solid extraction combined with column liquid chromatography is described for the determination of diclofenac in plasma. After addition of pH 5 buffer and the internal standard solution to the plasma sample, both sample preparation via a C18 disposable extraction column and injection were performed by a Gilson ASPEC system. Diclofenac and the internal standard were separated on a reversed-phase column, using methanol—pH 7.2 phosphate buffer (56:44, v/v) as mobile phase at a flow-rate of 0.4 ml/min. The reproducibility and accuracy of the method were acceptable over the concentration range 31–3140 nmol/l in plasma.  相似文献   

3.
A high-performance liquid chromatographic method for the determination of piribedil and its p-hydroxylated, catechol and N-oxide metabolites in plasma is described. After addition of an internal standard (buspirone), the plasma samples were subjected to a three-step extraction procedure. The final extracts were evaporated to dryness under nitrogen, and the residues were reconstituted in 100 μl of mobile phase (0.01 M phosphate buffer—acetonitrile, 50:50, v/v) and chromatographed by acetonitrile gradient elution on a C18 reversed-phase column coupled to an ultraviolet detector set at 240 nm. The method was selective for piribedil and its metabolites, and sufficiently sensitive and precise for studies aimed at elucidating the role of the metabolites in the parent drug's pharmacological effects.  相似文献   

4.
A simple procedure for the simultaneous determination of modafinil, its acid and sulfone metabolites in plasma is described. The assay involved an extraction of the drug, metabolites and internal standard from plasma with a solid-phase extraction using C18 cartridges. These compounds were eluted by methanol. The extract was evaporated to dryness at 40°C under a gentle stream of nitrogen. The residue was redissolved in 250 μl of mobile-phase and a 30 μl aliquot was injected via an automatic sampler into the liquid chromatograph and eluted with the mobile-phase (26%, v/v acetonitrile in 0.05 M orthophosphoric acid buffer adjusted to pH 2.6) at a flow-rate of 1.1 ml/min on a C8 Symmetry cartridge column (5 μm, 150 mm×3.9 mm, Waters) at 25°C. The eluate was detected at 225 nm. Intra-day coefficients of variation ranged from 1.0 to 2.9% and inter-day coefficients from 0.9 to 6.1%. The limits of detection and quantitation of the assay were 0.01 μg/ml and 0.10 μg/ml respectively.  相似文献   

5.
An isocratic high-performance liquid chromatographic (HPLC) method with ultraviolet detection is described for the quantification of the atypical neuroleptic clozapine and its major metabolites, N-desmethylclozapine and clozapine N-oxide, in human serum or plasma. The method included automated solid-phase extraction on C18 reversed-phase material. Clozapine and its metabolites were separated by HPLC on a C18 ODS Hypersil analytical column (5 μm particle size; 250 mm × 4.6 mm I.D.) using an acetonitrile—water (40:60, v/v) eluent buffered with 0.4% (v/v) N,N,N′,N′-tetramethylethylenediamine and acetic acid to pH 6.5. Imipramine served as internal standard. After extraction of 1 ml of serum or plasma, as little as 5 ng/ml of clozapine and 10 or 20 ng/ml of the metabolites were detectable. Linearity was found for drug concentrations between 5 and 2000 ng/ml as indicated by correlation coefficients of 0.998 to 0.985. The intra- and inter-assay coefficients of variation ranged between 1 and 20%. Interferences with other psychotropic drugs such as benzodiazepines, antidepressants or neuroleptics were negligible. In all samples, collected from schizophrenic patients who had been treated with daily oral doses of 75–400 mg of clozapine, the drug and its major metabolite, N-desmethylclozapine, could be detected, while the concentrations of clozapine N-oxide were below 20 ng/ml in three of sixteen patients. Using the method described here, data regarding relations between therapeutic or toxic effects and drug blood levels or metabolism may be collected in clinical practice to improve the therapeutic efficacy of clozapine drug treatment.  相似文献   

6.
An automated, internal standard high-performance liquid chromatographic method for the simultaneous quantitation of felbamate and its three metabolites in adult and neonatal rat brain and heart tissue homogenates was developed and validated. The homogenates prepared from one part of the tissue and four parts of water were extracted with ethyl acetate, and the extract was evaporated to dryness and redissolved in mobile phase. Separation was accomplished on a Waters Resolve C18, 5 μm, 300 mm × 3.9 mm I.D. column with a mobile phase consisting of 0.01 M phosphate buffer, pH 6.8—acetonitrile—methanol (800:150:50, v/v/v). Eluting peaks were monitored with an ultraviolet detector at 210 nm. The linear range of the assay for felbamate and the metabolites was 0.20–50.00 μg/ml of homogenate or 1–250 μg/g of brain or heart tissue. The lower limit of quantitation for all four analytes was 0.20 μg/ml of homogenate or 1.00 μg/g of tissue.  相似文献   

7.
A high-performance liquid chromatographic method with electrochemical detection has been developed for the simultaneous determination of epirubicin, 13-S-dihydroepirubicin, doxorubicin and 13-S-dihydrodoxorubicin in human plasma. An aliquot of 200 μl plasma, spiked with internal standard, was extracted by solid-phase extraction using polymeric adsorbent columns. Chromatography was performed using a C18 reversed-phase column with a mobile phase consisting of water–acetonitrile (71:29, v/v) containing 0.05 M Na2HPO4 and 0.05% v/v triethylamine adjusted to pH 4.6 with citric acid. Linearity of the method was obtained in the concentration range of 1–500 ng/ml for all the analytes. Analytical recoveries of the analytes ranged from 89 to 93%. The assay can be used for the simultaneous determination of the four analytes, or for epirubicin and its metabolite or doxorubicin and its metabolite, using the other parent drug as an internal standard. The method was applied to analyze human plasma samples from patients treated with epirubicin using doxorubicin as an internal standard.  相似文献   

8.
A column-switching high-performance liquid chromatographic (HPLC) method is described for the determination of dapoxetine, and its mono- and di-desmethyl metabolites in human plasma. The analytes, including an internal standard, were extracted from plasma at basic pH with hexane—ethyl acetate. The organic extract was evaporated to dryness and the residue reconstituted with acetonitrile. The analytes were separated from late-eluting endogenous substances on a Zorbax RX-C8 pre-column. The front-cut fraction containing the analytes was further separated on a second RX-C8 column. The analytes were detected by their native fluorescence, using excitation and emission wavelengths of 230 and 330 nm, respectively. The limit of quantitation was determined to be 20 ng/ml, and the response was linear from 20 to 200 ng/ml. The method has been successfully applied to human plasma samples in a Phase I study.  相似文献   

9.
A simple, selective, and sensitive liquid chromatographic method with ultraviolet detection was developed for the analysis of penicillin G in bovine plasma. The assay utilizes a simple extraction of penicillin G from plasma (with a known amount of penicillin V added as internal standard) with water, dilute sulphuric acid and sodium tungstate solutions, followed by concentration on a conditioned C18 solid-phase extraction column. After elution with 500 μl of elution solution, the penicillins are derivatized with 500 μl of 1,2,4-triazole—mercuric chloride solution at 65°C for 30 min. The penicillin—mercury mercaptide complexes are separated by reversed-phase liquid chromatography on a C18 column. The method, which has a detection limit of 5 ng/ml (ppb) in bovine plasma, was used to quantitatively measure the concentrations of penicillin G in plasma of steers at a series of intervals after the intramuscular administration of a commercial formulation of procaine penicillin G.  相似文献   

10.
A selective and sensitive high-performance liquid chromatographic assay with ultraviolet detection for the determination of the antidepressant drug etoperidone and two active metabolites in plasma is described. The drug, metabolites and internal standard are isolated from plasma using a two-step liquid—liquid extraction procedure. The resulting sample is chromatographed on a C18 column (10 cm × 2.1 mm I.D.) with ultraviolet detection at 254 nm. Standard curves are linear for each compound over the concentration range 2–1000 ng/ml. The accuracy and precision of the assay, expressed as the percentage deviation of measured values from the true value and the relative standard deviation (inter-run), are ≤ 10% at all concentrations except the minimum quantification limit. Using an automated injector and computerized data acquisition, eighty samples can be routinely processed in one day. The assay has been successfully used for the analysis of plasma samples from pharmacokinetic studies in mice, rats, dogs and humans.  相似文献   

11.
A simple and sensitive high-performance liquid chromatographic method for the simultaneous assay of amiodarone and desethylarniodarone in plasma, urine and tissues has been developed. The method for plasma samples and tissue samples after homogenizing with 50% ethanol, involves deproteinization with acetonitrile containing the internal standard followed by centrifugation and direct injection of the supernatant into the liquid chromatograph. The method for urine specimens includes extraction with a diisopropyl ether—acetonitrile (95:5, v/v) mixture at pH 7.0 using disposable Clin-Elut 1003 columns, followed by evaporation of the eluate, reconstitution of the residue in methanol—acetonitrile (1:2, v/v) mixture and injection into the chromatograph. Separation was obtained using a Radial-Pak C18 column operating in combination with a radial compression separation unit and a methanol–25% ammonia (99.3:0.7, v/v) mobile phase. A wavelength of 242 nm was used to monitor amiodarone, desethylamiodarone and the internal standard. The influence of the ammonia concentration in the mobile phase on the capacity factors of amiodarone, desethylamiodarone and two other potential metabolites, monoiodoamiodarone (L6355) and desiodoamiodarone (L3937) were investigated. Endogenous substances or a variety of drugs concomitantly used in amiodarone therapy did not interfere with the assay.The limit of sensitivity of the assay was 0.025 μg/ml with a precision of ± 17%. The inter- and intra-day coefficient of variation for replicate analyses of spiked plasma samples was less than 6%. This method has been demonstrated to be suitable for pharmacokinetic and metabolism studies of amiodarone in man.  相似文献   

12.
A sensitive and selective high-performance liquid chromatographic method has been developed for a new anticonvulsant, fluzinamide, and three of its active metabolites. This method requires only 0.5 ml of plasma, and it involves a single extraction with a mixture of hexane—dichloromethane—butanol (55:40:5). The plasma extract is chromatographed on a 10-μm, C18 reversed-phase column and quantitated by ultraviolet absorbance at 220 nm. The concentration—response curve for all four compounds are linear from 0.05 μg/ml to at least 10 μg/ml. The extraction efficiency of this method is greater than 90%. The accuracy and precision of the method were tested by analyzing spiked unknown samples that had been randomly distributed across the concentration range. The mean concentrations found were within ± 9% of the various amounts added with a standard deviation of ± 3.5%. This method has been successfully applied to the analysis of samples obtained from fluzinamide-dosed dogs, healthy unmedicated volunteers, and patients who were at steady state with phenytoin, carbamazepine, and fluzinamide.  相似文献   

13.
A simple, rapid and reproducible reversed-phase high-performance liquid chromatographic method for the simultaneous determination of benzoic acid (BA), phenylacetic acid (PAA) and their respective glycine conjugates hippuric acid (HA) and phenaceturic acid (PA) in sheep urine is described. The procedure involves only direct injection of a diluted urine sample, thus obviating the need for an extraction step or an internal standard. The compounds were separated on a Nova-Pak C18 column with isocratic elution with acetate buffer (25 mM, pH 4.5)—methanol (95:5). A flow-rate of 1.0 ml/min, a column temperature of 35°C and detection at 230 nm were employed. These conditions were optimized by investigating the effects of pH, molarity, methanol concentration in the mobile phase and column temperature on the resolution of the metabolites. The total analysis time was less than 15 min per sample. At a signal-to-noise ratio of 3 the detection limits for ten-fold diluted urine were 1.0 μg/ml for BA and HA and 5.0 μg/ml for PAA and PA with a 20-μl injection.  相似文献   

14.
A rapid, sensitive and specific assay method has been developed to determine plasma concentrations of olopatadine hydrochloride (A) and its metabolites, M1 (B), M2 (C) and M3 (D), using high-performance liquid chromatography with electrospray ionization tandem mass spectrometry (LC–ESI-MS–MS). Olopatadine, its metabolites, and internal standard, KF11796 (E), were separated from plasma using solid-phase extraction (Bond Elut C18 cartridge). The eluate was dried, reconstituted and injected into the LC–ESI-MS–MS system. The calibration curves showed good linearity over the ranges 1–200 ng/ml for olopatadine and M3, and 2–100 ng/ml for M1 and M2, and the method was thoroughly validated and applied to the determination of olopatadine and its metabolites in plasma collected during Phase I clinical trials. Furthermore, the assay values were compared with those determined by the radioimmunoassay method, which has been routinely used to determine olopatadine in plasma.  相似文献   

15.
An improved method suitable for the determination of 8-methoxypsoralen in the range 50–1500 ng/ml in the plasma of psoriatic patients undergoing PUVA (psoralens and long-wave ultraviolet light) therapy is proposed. A 5-ml aliquot of plasma containing sodium citrate as anticoagulant was centrifuged, griseofulvin was added as internal standard and the sample was denatured with acetonitrile. The supernatant was applied to C18 cartridges and 8-methoxypsoralen was eluted with methanol. The evaporated eluate was reconstituted in the mobile phase for high-performance liquid chromatography (HPLC) and applied to the HPLC column: mobile phase, acetonitrile—0.01 M phosphoric acid (34:66); flow-rate, 1 ml/min; temperature, 40°C; column, Spherisorb 5 ODS, 100 mm × 4.6 mm I.D., 5 μm particle size; UV detection at 248 nm; detection limit, 15 ng/ml of plasma.  相似文献   

16.
A high-performance liquid chromatographic assay method for the quantitation of ipecac alkaloids (cephaeline and emetine) in human plasma and urine is described. Human plasma or urine was extracted with diethylether under alkaline conditions following the addition of an internal standard. Concentrations of alkaloids and internal standard were determined by octadecylsilica chromatographic separation (Symmetry C18 columns, plasma analysis; 15 cm×4.6 mm I.D., 5 μm particle size, urine analysis; 7.5 cm×4.6 mm I.D., 5 μm particle size). The mobile phase consisted of buffer (20 mmol/l 1-heptanesulfonic acid sodium salt, adjusted to pH 4.0 with acetic acid)–methanol (51:49, v/v). Eluate fluorescence was monitored at 285/316 nm. The lowest quantitation limits of cephaeline and emetine were 1 and 2.5 ng/ml, respectively, in plasma, and 5 ng/ml in urine. Intra- and inter-day relative standard deviations were below 15%. The assay is sensitive, specific and applicable to pharmacokinetic studies in humans.  相似文献   

17.
An assay for amiloride was devised for efficient use with the wide variety of analogues available. Amiloride was extracted from 1-ml plasma samples by elution from a C8 preparative column with 6% acetonitrile—45% methanol—5.4% acetic acid, adjusted to pH 4.0 with trimethylamine. Samples were lyophilized, resuspended in 50% methanol, filtered through 0.22-μm Spin-X cartridges, applied to a reversed-phase C18 column, and eluted in a 0–50% acetonitrile gradient in 0.4% acetic acid, pH 4.5 (1.2 ml/min). Detection by ultraviolet absorbance at 360 nm was linear from 1 to 1000 ng. Versatility of the method was demonstrated with the analogues benzamil, 6-hydro-, 6-iodo-, 5-hexamethylene-, and 5-chlorobenzyl-2',4'-dimethylbenzylamiloride.  相似文献   

18.
A simple and reliable HPLC method was developed for the estimation of a new anti-cancer agent that belongs to the thioxanthone class, SR271425 in mouse plasma. SR271425, it’s metabolites and internal standard (SR233377) were separated from plasma by liquid–liquid extraction using dichloromethane after quenching the plasma proteins with acetonitrile. Chromatography was performed on a reversed-phase C18 column using methanol–10 mM phosphate buffer, pH 3.5 (45:55) as mobile phase at a flow-rate of 0.8 ml/min for first 10 min and 1.4 ml/min for the next 15 min with UV–Vis detection at 264 nm and SR233377 as internal standard. The retention times of SR271425 and internal standard were 18.6 and 14.8 min, respectively. The limit of detection was 40 ng/ml and the limit of quantification was 78 ng/ml. This method was also able to detect the three metabolites of SR271425. The intra- and inter-day relative standard deviations were less than 13% at all concentrations. This analytical method was precise and reproducible for pharmacokinetics and metabolism studies of the drug in mice. SR271425 is proceeding to phase I clinical trials in 2001.  相似文献   

19.
A method is reported for the measurement of quercetin in human plasma using reversed-phase high-performance liquid chromatography (HPLC). Quercetin and kaempferol (as internal standard) were spiked into plasma samples and extracted using C18 Sep-Pak Light cartridges (efficiency > 85%). Flavonoids were eluted with aqueous acetone (50% v/v, pH 3.5), dried down and redissolved in aqueous acetone (45% v/v, pH 3.5). The increased osmolarity promoted a phase separation and the water-saturated acetone layer, containing the flavonoids, was analysed by HPLC with aqueous acetone mobile phase (45% v/v acetone in 250 mM sodium dihydrogen sulphate. The mixture was adjusted to pH 3.5 with phosphoric acid and used at a flow-rate of 1.0 ml/min) and μBondapak C18 column (150 × 3.9 mm I.D., 10 μm particle size). The detection limit (A375 nm) for quercetin in plasma was 0.1 μg/ml (300 nM). The method also detects metabolites of quercetin, although these are not yet identified.  相似文献   

20.
A sensitive and rapid method for measuring epidoxorubicin and its six metabolites by high-performance liquid chromatography using an advanced automated sample processor is described. Plasma samples (1 ml) were extracted using C2 cassettes, and reversed-phase chromatography was performed with an Apex II ODS column. The isocratic mobile phase of acetonitrile—0.019 M NaH2PO4 (pH 4.0) had a flow-rate of 1 ml/min and the fluorescence detector an excitation wavelength of 480 nm with an emission at 580 nm. Linear calibration curves were obtained which were reproducible both within-day and day-to-day (coefficients of variation < 10%). The extraction efficacy of epidoxorubicin was 88% and ranged from 51 to 88% for the metabolites. This method has been successfully applied to measure the plasma levels of these compounds in patients receiving epidoxorubicin over a wide dose range (12–120 mg/m2) and in patients with disturbed liver biochemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号