首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Regulation of Vascular Development by CLE Peptide-receptor Systems   总被引:1,自引:0,他引:1  
Cell division and differentiation of stem cells are controlled by non-cell-autonomous signals in higher organisms. The plant vascular meristem is a stem-cell tissue comprising procambial cells that produce xylem cells on one side and phloem cells on the other side. Recent studies have revealed that TDIF (tracheary element differentiation inhibitory factor)/CLE41/CLE44 peptide signal controls the procambial cell fate in a non-cell-autonomous manner. TDIF produced in and secreted from phloem cells is perceived by TDR/PXY, a leucine-rich repeat receptor kinase located in the plasma membrane of procambial cells. This signal suppresses xylem cell differentiation of procambial cells and promotes their proliferation. In addition to TDIF, some other CLE peptides play roles in vascular development. Here, we summarize recent advances in CLE signaling governing vascular development.  相似文献   

2.
3.
The vascular stem-cell tissue known as procambium generates phloem cells on one side and xylem cells on the other. The Arabidopsis PXY gene encodes a leucine-rich repeat receptor-like kinase that is required for polar divisions of procambial cells.  相似文献   

4.
Orientation of cell division is essential for plant development as the direction of growth is determined by the direction of cell expansion and orientation of cell division. We have demonstrated that cell division orientation in vascular tissue is regulated by the interactions between a receptor kinase (PXY) expressed in dividing cells and its peptide ligand (CLE41) that is localized to adjacent phloem cells. Given that other receptor kinases have been identified as orienting the cell division plane in several developmental processes, we suggest that localized signaling from adjacent cells may be a general mechanism for defining the plane of cell division.Key words: xylem, phloem, cell division orientation, procambium, cambiumThroughout the life of plants, new organs are generated from meristems which contain stem cells at their center. Meristematic cells divide in regulated processes resulting in displacement of daughter cells to the periphery of the meristem where they differentiate, taking on new cell identities.1 Vascular meristems (cambium and procambium) are responsible for radial growth and are the main source of plant biomass.2 Their regulation has a come under increasing scrutiny as biomass is likely to play an increasing role in generation of renewable energy.3Arabidopsis vascular tissue is organized into discrete collateral bundles in stems,4 whereas in hypocotyls, vasculature forms in a continuous ring, much like that of trees.5 In both cases spatially separated xylem and phloem are formed along the stem mediolateral axis and are populated with cells derived from the procambium or cambium (Fig. 1). Vascular initials displaced from the meristematic zone towards the center of the stem differentiate into xylem whereas those displaced towards the outside of the stem differentiate into phloem. This organization occurs because vascular meristematic cells are long and thin and divide periclinally down their long axis, perpendicular to the mediolateral axis. Because these are highly ordered divisions, vascular tissue is characterized by long files of cells. Until recently regulatory factors which influence the highly ordered nature of these divisions—and therefore plant vascular tissue organization were entirely unknown.Open in a separate windowFigure 1Arabidopsis vascular tissue at the base of inflorescence stems (A) and hypocotyls (B). The mediolateral axes are marked with arrows, x is xylem, ph is phloem, pc is procambium, c is cambium. Scale bars are 50 µm.  相似文献   

5.
[ Guodong Wang (Corresponding author)] The plant vascular system consists of two conductive tissues, phloem and xylem. The vascular meristem, namely the (pro‐)cambium, is a stem‐cell tissue that gives rise to both xylem and phloem. Recent studies have revealed that CLAVATA3/Embryo Surrounding Region‐related (CLE) peptides function in establishing the vascular system through interaction with phytohormones. In particular, TDIF/CLE41/CLE44, phloem‐derived CLE peptides, promote the proliferation of vascular cambium cells and prevent them from differentiating into xylem by regulating WOX4 expression through the TDR/PXY receptor. In this review article, we outline recent advances on how CLE peptides function in vascular development in concert with phytohormones through mediating cell‐cell communication. The perspective of CLE peptide signaling in vascular development is also discussed.  相似文献   

6.
7.
Bryan AC  Obaidi A  Wierzba M  Tax FE 《Planta》2012,235(1):111-122
The regulation of cell specification in plants is particularly important in vascular development. The vascular system is comprised two differentiated tissue types, the xylem and phloem, which form conductive elements for the transport of water, nutrients and signaling molecules. A meristematic layer, the procambium, is located between these two differentiated cell types and divides to initiate vascular growth. We report the identification of a receptor-like kinase (RLK) that is expressed in the vasculature. Histochemical analyses of mutants in this kinase display an aberrant accumulation of highly lignified cells, typical of xylem or fiber cells, within the phloem. In addition, phloem cells are sometimes located adjacent to xylem cells in these mutants. We, therefore, named this RLK XYLEM INTERMIXED WITH PHLOEM 1 (XIP1). Analyses of longitudinal profiles of xip1 mutant stems show malformed cell files, indicating defects in oriented cell divisions or cell morphology. We propose that XIP1 prevents ectopic lignification in phloem cells and is necessary to maintain the organization of cell files or cell morphology in conductive elements.  相似文献   

8.
9.
Zhang J  Gao G  Chen JJ  Taylor G  Cui KM  He XQ 《The New phytologist》2011,192(4):869-884
Regeneration is a common strategy for plants to repair damage to their tissue after attacks from other organisms or physical assaults. However, how differentiating cells acquire regenerative competence and rebuild the pattern of new tissues remains largely unknown. Using anatomical observation and microarray analysis, we investigated the morphological process and molecular features of secondary vascular tissue regeneration after bark girdling in trees. After bark girdling, new phloem and cambium regenerate from differentiating xylem cells and rebuild secondary vascular tissue pattern within 1 month. Differentiating xylem cells acquire regenerative competence through epigenetic regulation and cell cycle re-entry. The xylem developmental program was blocked, whereas the phloem or cambium program was activated, resulting in the secondary vascular tissue pattern re-establishment. Phytohormones play important roles in vascular tissue regeneration. We propose a model describing the molecular features of secondary vascular tissue regeneration after bark girdling in trees. It provides information for understanding mechanisms of tissue regeneration and pattern formation of the secondary vascular tissues in plants.  相似文献   

10.
11.
Summary Spontaneous nodules were formed on the primary roots of alfalfa plants in the absence ofRhizobium. Histologically, these white single-to-multilobed structures showed nodule meristems, cortex, endodermis, central zone, and vascular strands. Nodules were devoid of bacteria and infection threads. Instead, the larger cells were completely filled with many starch grains while smaller cells had very few or none. Xylem parenchyma and phloem companion cells exhibited long, filiform and branched wall ingrowths. The characteristic features of both types of transfer cells were polarity of wall ingrowths, high cytoplasmic density, numerous mitochondria, abundant ribosomes, well-developed nucleus and nucleolus, and vesicles originated from rough endoplasmic reticulum. These results were compared with normal nodules induced byRhizobium. Our results suggest that xylem parenchyma and phloem companion transfer cells are active and probably involved in the short distance transport of solutes in and out of spontaneous nodules. Since younger nodules showed short, papillate, and unbranched wall ingrowths, and older tissue showed elongated, filiform and branched wall ingrowths, the development of wall ingrowths seemed to be gradual rather then abrupt. The occurrence of both type-A and -B wall ingrowths suggests that phloem companion transfer cells may be active in loading and unloading of sieve elements. Since there were no symbiotic bacteria and thus no fixed nitrogen, it is tempting to speculate that xylem parenchyma transfer cells may be re-transporting accumulated carbon from starch grains to the rest of the plant body by loading xylem vessels. Fusion of ER-originated vesicles with wall ingrowth membrane indicated the involvement of ER in the membrane formation for elongating wall ingrowths. Since transfer cells were a characteristic feature of both spontaneous andRhizobium-induced nodules, their occurrence and development is controlled by the genetic make-up of alfalfa plant and not by a physiological source or sink emanating from symbiotic bacteria.Abbreviations ATP adenosine triphosphate - ATPase adenosine triphosphatase - EH emergent root hair - EM electron microscope - Nar nodulation in the absence of Rhizobium - RT root tip - RER rough endoplasmic reticulum - YEMG yeast extract mannitol-gluconate  相似文献   

12.
13.
14.
Cell division and differentiation of stem cells are controlled by non-cell-autonomous signals in higher organisms. The plant vascular meristem is a stem-cell tissue comprising procambial cells that produce xylem cells on one side and phloem cells on the other side. Recent studies have revealed that TDIF (tracheary element differentiation inhibitory factor)/CLE41/CLE44 peptide signal controls the procambial cell fate in a non-cell-autonomous manner. TDIF produced in and secreted from phloem cells is perceive...  相似文献   

15.
Plants generate various tissues and organs via a strictly regulated developmental program. The plant vasculature is a complex tissue system consisting of xylem and phloem tissues with a layer of cambial cells in between. Multiple regulatory steps are involved in vascular development. Although molecular and genetic studies have uncovered a variety of key factors controlling vascular development, studies of the actual functions of these factors have been limited due to the inaccessibility of the plant vasculature. Thus, to obtain a different perspective, culture systems have been widely used to analyze the sequential processes that occur during vascular development. A tissue culture system known as VISUAL, in which molecular genetic analysis can easily be performed, was recently established in Arabidopsis thaliana. This reconstitutive approach to vascular development enables this process to be investigated quickly and easily. In this review, I summarize our recent knowledge of the regulatory mechanisms underlying vascular development and provide future perspectives on vascular analyses that can be performed using VISUAL.  相似文献   

16.
17.
18.
The indeterminate nature of plant growth and development depends on the stem cell system found in meristems. The Arabidopsis thaliana vascular meristem includes procambium and cambium. In these tissues, cell–cell signaling, mediated by a ligand-receptor pair made of the TDIF (for tracheary element differentiation inhibitory factor) peptide and the TDR/PXY (for TDIF RECEPTOR/ PHLOEM INTERCALATED WITH XYLEM) membrane protein kinase, promotes proliferation of procambial cells and suppresses their xylem differentiation. Here, we report that a WUSCHEL-related HOMEOBOX gene, WOX4, is a key target of the TDIF signaling pathway. WOX4 is expressed preferentially in the procambium and cambium, and its expression level was upregulated upon application of TDIF in a TDR-dependent manner. Genetic analyses showed that WOX4 is required for promoting the proliferation of procambial/cambial stem cells but not for repressing their commitment to xylem differentiation in response to the TDIF signal. Thus, at least two intracellular signaling pathways that diverge after TDIF recognition by TDR might regulate independently the behavior of vascular stem cells. Detailed observations in loss-of-function mutants revealed that TDIF-TDR-WOX4 signaling plays a crucial role in the maintenance of the vascular meristem organization during secondary growth.  相似文献   

19.
盾叶薯蓣实生苗根状茎的形态发生及薯蓣皂甙积累的研究   总被引:11,自引:0,他引:11  
对盾叶薯蓣实生苗根状茎的形态发生、发育过程及薯蓣皂甙积累与分布进行了研究。种子萌动后,节部膨大形成球状体,其直径约1.5cm。其胚芽生长锥先后形成4个突起,分别发育形成芽的原分生组织。按其出现的先后分别称为第1芽、第2芽、第3芽和第4芽。第1芽呈剑指形,以后发育为地上缠绕茎,其余3个芽呈丘状突起都分别发育为地下根状茎。有的芽的原分生组织以后还可以形成2个芽的原分生组织,从而使根状茎形成分枝。根状茎顶端的原分生组织由鳞片包被,顶端下方的原表皮内存在初生增厚分生组织。初生增厚分生组织细胞不断向内分裂和其衍生细胞的体积增大,是根状茎能迅速增粗的主要原因。分化完成的根状茎由周皮、基本组织和散生的维管束构成。经组织化学测定,根状茎中薯蓣皂甙主要存在于基本组织的薄壁细胞中,呈液滴状。原分生组织不含薯蓣皂甙,近顶端的基本分生组织细胞内不形成含薯蓣皂甙的液滴。其中,有小型维管束分布的基本组织中薯蓣皂甙的积累与分布最丰富,两年生根状茎中薯蓣皂甙的含量比一年生的高。  相似文献   

20.
In plant, post-embryonic development relies on the activities of indeterminate cell populations termed meristems, spatially clustered cell lineages, wherein a subset divides indeterminately. For correct growth, the plant must maintain a constant flow of cells through the meristem, where the input of dividing pluripotent cells offsets the output of differentiating cells. KNOTTED1-like homeobox (KNOX) genes are expressed in specific patterns in the plant meristems and play important roles in maintaining meristematic cell identity. We have analyzed the expression pattern of HtKNOT1, a class I KNOX gene of Helianthus tuberosus, in stems, inflorescence meristems, floral meristems and floral organs. HtKNOT1 is expressed in cambial cells, phloem cells and xylematic parenchyma within apical stem internodes, while in basal internodes HtKNOT1 expression was restricted to the presumptive initials and recently derived phloem cells. In the reproductive phase, HtKNOT1 mRNAs were detected in both the inflorescence and floral meristems as well within lateral organ primordia (i.e. floral bracts, petals, stamens and carpels). In more differentiated flowers, the expression of HtKNOT1 was restricted to developing ovules and pollen mother cells. HtKNOT1 may play a dual role being required to maintain the meristem initials as well as initiating differentiation and/or conferring new cell identity. In particular, it is possible that HtKNOT1 cooperates at floral level with additional factors that more specifically control floral organs and pollen development in H. tuberosus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号