首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
检验点激酶1(checkpointkinase1,Chk1)为一种进化保守的蛋白激酶,是细胞检验点的转导因子。当电离辐射、紫外线等引起细胞DNA损伤或者DNA复制叉停滞时Chk1活化,诱导细胞产生细胞周期阻滞、DNA修复或细胞凋亡等特征。现对Chk1的结构、功能以及病毒通过Chk1调控宿主细胞周期等方面进行简述。  相似文献   

2.
生物有机体基因组DNA经常会受到内源或外源因素的影响而导致结构发生变化,产生损伤;在长期进化过程中,有机体也相应形成了一系列应对与修复损伤DNA,并维持染色体基因组正常结构功能的机制。其中DNA损伤检验点(DNA damage checkpoint)就是在感应DNA损伤的基础上,对损伤感应信号进行转导,或引起细胞周期的暂停,从而使细胞有足够的时间对损伤DNA进行修复,或最终导致细胞发生凋亡。DNA损伤检验点信号转导途径是一个高度保守的信号感应过程,整个途径大致可以分为损伤感应、信号传递及信号效应3个组成部分。其中3-磷脂酰肌醇激酶家族类成员ATM(ataxia-telangiectasia mutated)和ATR(ataxia-telangiectasia and Rad3-related)活性的增加构成整个途径活化的第一步。它们通过激活下游的效应激酶,Chk2/Chk1,通过协同作用许多其他调控细胞周期、DNA复制、DNA损伤修复及细胞凋亡等过程的蛋白质因子来实现细胞对DNA损伤的高度协调反应。近十几年,随着此领域研究的不断深入,人们逐步揭示了DNA损伤检验点途径发生过程中,各种核心组分通过与不同调节因子、效应因子及DNA损伤修复蛋白间的复杂相互作用,以实现监测感应异常DNA结构并实施相应反应的机制;其中,检验点衔接因子(mediators)及染色质结构,尤其是核小体组蛋白的共价修饰在调控ATM/ATR活性,促进ATM/ATR与底物间的相互作用以及介导DNA损伤位点周围染色质区域上多蛋白复合物在时间与空间上的动态形成发挥着重要的作用。同时,人们也开始发现DNA损伤检验点途径与DNA损伤修复、基因组稳定性以及肿瘤发生等过程之间某些内在的联系。该反应途径在通过协调细胞针对DNA损伤做出各种反应的基础上,直接或间接地参与或调控DNA损伤修复过程,并与DNA损伤修复途径协同作用最终保证染色体基凶组结构的完整性,而检验点途径的改变,则会引起基因组不稳定的发生,包括从突变频率的提高到大范围的染色体重排,以及染色体数量的畸变。如:突变发生在肿瘤形成早期,会大大增加肿瘤发生的几率。文章将对DNA损伤检验点途径机制及其对DNA损伤修复、基因组稳定性影响的最新进展进行综述。  相似文献   

3.
细胞周期检验点与肿瘤发生之间关系的研究进展   总被引:1,自引:0,他引:1  
牟华 《生物技术通讯》2009,20(1):111-113,122
DNA损伤反应引起的基因组不稳定性并不足以导致肿瘤发生,还需要一些协同突变促进肿瘤的生长或存活,因此,基因组结构不稳定和周期检验点突变失活是肿瘤发生的重要因素。与正常细胞不同,肿瘤细胞中细胞周期检验点反应缺陷,当肿瘤细胞遭受基因毒药物损伤时,可通过激活周期检验点反应阻滞细胞周期进程,加强损伤修复,导致耐药表型的产生。因此,寻找特异性的检验点抑制剂来加强化疗药物或辐射对肿瘤细胞的杀伤效应,已成为肿瘤治疗的一个研究方向。  相似文献   

4.
细胞DNA损伤检控点   总被引:1,自引:0,他引:1  
细胞周期检控点是维持细胞基因组稳定性的一个重要机制,主要包括。DNA损伤检控点、DNA复制检控点和纺锤体组装检控点。其中DNA损伤检控点能检测细胞在生命活动过程中出现的DNA损伤并引发细胞周期阻滞,为修复损伤提供足够的时间,以保证细胞遗传的稳定性。有关DNA损伤检控点的研究近年来已经取得了突破性进展,现简要介绍近年来在DNA损伤检控点研究中的一些新进展。  相似文献   

5.
细胞周期是高度有组织的时序调控过程,受到DNA损伤检控点、DNA复制检控点和纺锤体检控点等细胞周期检控点的精确调控。细胞周期检控点的作用主要是调节细胞周期的时序转换,以确保DNA复制、染色体分离等细胞重要生命活动的高度精确性,并对DNA损伤、DNA复制受阻、纺锤体组装和染色体分离异常等细胞损伤及时做出反应,以防止突变和遗传不稳定的发生。细胞周期检控点的功能缺陷,将导致细胞基因组的不稳定,与细胞癌变密切相关。因此细胞周期检控点对于维持细胞遗传信息的稳定性和完整性以及防止细胞癌变和遗传疾病的发生起着至关重要的作用。  相似文献   

6.
DNA放射损伤与p53   总被引:1,自引:0,他引:1  
Qian X  Zhu YB 《生理科学进展》2005,36(4):379-381
电离辐射等多种因素可以引起DNA损伤,表现为碱基改变、DNA双链断裂(DNA double-strand breaks,DSBs)和DNA单链断裂(Single-strand breaks,SSBs)等多种形式。DNA损伤后,细胞发生应答,即引起细胞周期阻滞和/或细胞程序性死亡,以减少损伤引起的染色体畸变和基因组不稳定。在细胞应答过程中,p53蛋白水平和活性均发生变化,介导细胞周期阻滞、程序性死亡,并直接参与DNA损伤修复过程。  相似文献   

7.
细胞时刻面临着细胞内部因素或周围环境因素对基因组DNA的攻击,从而导致DNA损伤。DNA损伤可触发生物的DNA损伤修复系统来管理和修复各种DNA损伤,以维持基因组稳定性。当细胞受到损伤后,Rad9在细胞周期检测点中发挥作用,阻滞细胞周期的运行,使细胞有时间修复损伤DNA,来维持基因组的稳定。本文重点介绍Rad9在DNA损伤修复及细胞周期检测点调控中的作用及研究进展。  相似文献   

8.
刘阳  孙静亚  孔道春 《生命科学》2014,(11):1108-1119
DNA复制是细胞最基本的生命活动之一,是生物体生存和繁殖的基础。从原核生物到真核生物,DNA复制过程基本保守,分为复制起始和延伸两个阶段。复制叉是DNA复制的基本结构,它容易遭受多种内源或外源的DNA复制压力影响而停顿,导致基因组不稳定,引起细胞凋亡、癌变或细胞死亡等严重后果。为了维持复制叉的稳定,细胞进化出了一系列机制,其中最重要机制之一便是S期细胞周期检验点。就影响DNA复制叉稳定的内外因素、S期细胞周期检验点与复制叉稳定性的关系以及复制叉稳定性与相关疾病的发生、治疗等问题进行简要综述。  相似文献   

9.
大量研究表明,病毒感染细胞时,病毒编码的蛋白或DNA可以扰乱细胞周期通路:促进细胞向S期转化或者使细胞静息于G2/M期。在细胞内,细胞周期的调控机制十分复杂,其包含了由DNA损伤导致的细胞通路活化及其他方式。关于病毒对细胞周期的调控方式及细胞周期的改变对于病毒感染的研究已取得一定进展。对于病毒的此类研究可以揭示细胞活动中的关键调控因子及细胞周期检查点的具体分子机理。对病毒调控宿主细胞周期以达到自身最大化复制的机理进行综述。  相似文献   

10.
细胞周期检定点激酶ATM蛋白属于磷酸肌醇3激酶(PI-3K)家族成员,也是哺乳动物细胞BASC高分子蛋白复合物的组成之一。ATM调整由于DNA损伤引发的DNA修复和凋亡通路,该通路主要表现为DNA损伤激活ATM激酶,ATM激酶磷酸化其下游的相应蛋白,使细胞在细胞周期关卡处停滞分裂,主要是G1-S期和G2-M期的阻滞,使损伤的DNA得以修复,当修复失败时,细胞进入凋亡进程。ATM磷酸化的蛋白质很多,如p53,cdc25A,cdc25C等,这些蛋白质对细胞周期关卡调控都非常重要,因此也就证明了ATM在细胞周期调控中的重要作用。  相似文献   

11.
In order to maintain genetic integrity, cells are equipped with cell cycle checkpoints that detect DNA damage, orchestrate repair, and if necessary, eliminate severely damaged cells by inducing apoptotic cell death. The mitotic machinery is now emerging as an important determinant of the cellular responses to DNA damage where it functions as both the downstream target and the upstream regulator of the G2/M checkpoint. Cell cycle kinases and the DNA damage checkpoint kinases appear to reciprocally control each other. Specifically, cell cycle kinases control the inactivation of DNA damage checkpoint signaling. Termination of a DNA damage response by mitotic kinases appears to be an evolutionary conserved mechanism that allows resumption of cell cycle progression. Here we review recent reports in which molecular mechanisms underlying checkpoint silencing at the G2/M transition are elucidated.  相似文献   

12.
In most cells, the DNA damage checkpoint delays cell division when replication is stalled by DNA damage. In early Caenorhabditis elegans embryos, however, the checkpoint responds to developmental signals that control the timing of cell division, and checkpoint activation by nondevelopmental inputs disrupts cell cycle timing and causes embryonic lethality. Given this sensitivity to inappropriate checkpoint activation, we were interested in how embryos respond to DNA damage. We demonstrate that the checkpoint response to DNA damage is actively silenced in embryos but not in the germ line. Silencing requires rad-2, gei-17, and the polh-1 translesion DNA polymerase, which suppress replication fork stalling and thereby eliminate the checkpoint-activating signal. These results explain how checkpoint activation is restricted to developmental signals during embryogenesis and insulated from DNA damage. They also show that checkpoint activation is not an obligatory response to DNA damage and that pathways exist to bypass the checkpoint when survival depends on uninterrupted progression through the cell cycle.  相似文献   

13.
Eukaryotic genome integrity is maintained via a DNA damage checkpoint that recognizes DNA damage and halts the cell cycle at metaphase, allowing time for repair. Checkpoint signaling is eventually terminated so that the cell cycle can resume. How cells restart cell division following checkpoint termination is poorly understood. Here we show that the SUMO protease Ulp2 is required for resumption of cell division following DNA damage-induced arrest in Saccharomyces cerevisiae, although it is not required for DNA double-strand break repair. The Rad53 branch of the checkpoint pathway generates a signal countered by Ulp2 activity following DNA damage. Interestingly, unlike previously characterized adaptation mutants, ulp2Delta mutants do not show persistent Rad53 phosphorylation following DNA damage, suggesting checkpoint signaling has been terminated and no longer asserts an arrest in these cells. Using Cdc14 localization as a cell cycle indicator, we show that nearly half of cells lacking Ulp2 can escape a checkpoint-induced metaphase arrest despite their inability to divide again. Moreover, half of permanently arrested ulp2Delta cells show evidence of an aberrant mitotic spindle, suggesting that Ulp2 is required for proper spindle dynamics during cell cycle resumption following a DNA damage-induced cell cycle arrest.  相似文献   

14.
DNA damage checkpoints arrest cell cycle progression to facilitate DNA repair. The ability to survive genotoxic insults depends not only on the initiation of cell cycle checkpoints but also on checkpoint maintenance. While activation of DNA damage checkpoints has been studied extensively, molecular mechanisms involved in sustaining and ultimately inactivating cell cycle checkpoints are largely unknown. Here, we explored feedback mechanisms that control the maintenance and termination of checkpoint function by computationally identifying an evolutionary conserved mitotic phosphorylation network within the DNA damage response. We demonstrate that the non-enzymatic checkpoint adaptor protein 53BP1 is an in vivo target of the cell cycle kinases Cyclin-dependent kinase-1 and Polo-like kinase-1 (Plk1). We show that Plk1 binds 53BP1 during mitosis and that this interaction is required for proper inactivation of the DNA damage checkpoint. 53BP1 mutants that are unable to bind Plk1 fail to restart the cell cycle after ionizing radiation-mediated cell cycle arrest. Importantly, we show that Plk1 also phosphorylates the 53BP1-binding checkpoint kinase Chk2 to inactivate its FHA domain and inhibit its kinase activity in mammalian cells. Thus, a mitotic kinase-mediated negative feedback loop regulates the ATM-Chk2 branch of the DNA damage signaling network by phosphorylating conserved sites in 53BP1 and Chk2 to inactivate checkpoint signaling and control checkpoint duration.  相似文献   

15.
Molecular anatomy of the DNA damage and replication checkpoints   总被引:12,自引:0,他引:12  
Qin J  Li L 《Radiation research》2003,159(2):139-148
Cell cycle checkpoints are signal transduction pathways that enforce the orderly execution of the cell division cycle and arrest the cell cycle upon the occurrence of undesirable events, such as DNA damage, replication stress, and spindle disruption. The primary function of the cell cycle checkpoint is to ensure that the integrity of chromosomal DNA is maintained. DNA lesions and disrupted replication forks are thought to be recognized by the DNA damage checkpoint and replication checkpoint, respectively. Both checkpoints initiate protein kinase-based signal transduction cascade to activate downstream effectors that elicit cell cycle arrest, DNA repair, or apoptosis that is often dependent on dose and cell type. These actions prevent the conversion of aberrant DNA structures into inheritable mutations and minimize the survival of cells with unrepairable damage. Genetic components of the damage and replication checkpoints have been identified in yeast and humans, and a working model is beginning to emerge. We summarize recent advances in the DNA damage and replication checkpoints and discuss the essential functions of the proteins involved in the checkpoint responses.  相似文献   

16.
DNA structure checkpoint pathways in Schizosaccharomyces pombe   总被引:4,自引:0,他引:4  
Caspari T  Carr AM 《Biochimie》1999,81(1-2):173-181
The response to DNA damage includes a delay to progression through the cell cycle to aid DNA repair. Incorrectly replicated chromosomes (replication checkpoint) or DNA damage (DNA damage checkpoint) delay the onset of mitosis. These checkpoint pathways detect DNA perturbations and generate a signal. The signal is amplified and transmitted to the cell cycle machinery. Since the checkpoint pathways are essential for genome stability, the related proteins which are found in all eukaryotes (from yeast to mammals) are expected to have similar functions to the yeast progenitors. This review article focuses on the function of checkpoint proteins in the model system Schizosaccharomyces pombe. Checkpoint controls in Saccharomyces cerevisiae and mammalian cells are mentioned briefly to underscore common or diverse features.  相似文献   

17.
The G2 DNA damage checkpoint prevents mitotic entry in the presence of damaged DNA, and thus is essential for cells to replicate with stable genetic inheritance. Whilst significant progress has been made in the past 10 years on the mechanism of checkpoint activation, little attention has been paid to how the DNA damage checkpoint is switched off to allow cell cycle re-entry. Insight into the mechanism of cell cycle re-entry was recently provided by our finding that the Schizosaccharomyces pombe type 1 phosphatase (PP1) Dis2 dephosphorylates the checkpoint effector kinase Chk1. This occurs on a site phosphorylated by the ATR homologue Rad3 in response to DNA damage, and results in Chk1 inactivation and checkpoint release. Here we discuss the implications of this finding on DNA damage checkpoint signalling, and speculate on models for checkpoint maintenance and release.  相似文献   

18.
The G2 DNA damage checkpoint prevents mitotic entry in the presence of damaged DNA, and thus is essential for cells to replicate with stable genetic inheritance. Whilst significant progress has been made in the past 10 years on the mechanism of checkpoint activation, little attention has been paid to how the DNA damage checkpoint is switched off to allow cell cycle re-entry. Insight into the mechanism of cell cycle re-entry was recently provided by our finding that the Schizosaccharomyces pombe type 1 phosphatase (PP1) Dis2 dephosphorylates the checkpoint effector kinase Chk1. This occurs on a site phosphorylated by the ATR homologue Rad3 in response to DNA damage, and results in Chk1 inactivation and checkpoint release. Here we discuss the implications of this finding on DNA damage checkpoint signaling, and speculate on models for checkpoint maintenance and release.  相似文献   

19.
The evolutionarily conserved yeast Mec1 and Tel1 protein kinases, as well as the Mec1-interacting protein Ddc2, are involved in the DNA damage checkpoint response. We show that regulation of Tel1 and Ddc2-Mec1 activities is important to modulate both activation and termination of checkpoint-mediated cell cycle arrest. In fact, overproduction of either Tel1 or Ddc2 causes a prolonged cell cycle arrest and cell death in response to DNA damage, impairing the ability of cells to recover from checkpoint activation. This cell cycle arrest is independent of Mec1 in UV-irradiated Tel1-overproducing cells, while it is strictly Mec1 dependent in similarly treated DDC2-overexpressing cells. The Rad53 checkpoint kinase is instead required in both cases for cell cycle arrest, which correlates with its enhanced and persistent phosphorylation, suggesting that unscheduled Rad53 phosphorylation might prevent cells from re-entering the cell cycle after checkpoint activation. In addition, Tel1 overproduction results in transient nuclear division arrest and concomitant Rad53 phosphorylation in the absence of exogenous DNA damage independently of Mec1 and Ddc1.  相似文献   

20.
In the presence of double strand breaks, DNA damage checkpoint halts cell cycle progression. However, cells ultimately escape the checkpoint arrest and re-enter cell cycle in the presence of irreparable DNA damage. cdc5-ad was identified as a mutant that fails to adapt to the cell cycle arrest induced by DNA damage checkpoint. In budding yeast, Cdc5 protein kinase is a component of both MEN and FEAR pathways that are required for mitotic exit. It remains unclear whether the adaptation defect of cdc5-ad mutant cells is related to the function of Cdc5 in mitotic exit. Here we present evidence indicating that cdc5-ad mutant cells exhibit defects in mitotic exit. cdc5-ad mutant cells are sensitive to high dosage of Amn1, a negative regulator of MEN. It also shows synthetic growth defects with mutants in MEN pathway. Moreover, mutants in FEAR pathway exhibit defects in DNA damage adaptation. Thus, we conclude that the compromised mitotic exit pathway contributes to DNA damage adaptation defects in cdc5-ad mutant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号