首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 600 毫秒
1.
Summary In anaerobic wastewater treatment the separation of fermentative and methanogenic bacteria is aimed at an increased performance of the total digestion process. It is known that the attainable growth rate of the acidogenic population in continuous culture decreases at increasing influent concentrations of glucose. To account for this phenomenon, a new kinetic model was developed that combines substrate and product inhibition. In the present research product inhibition was investigated quantitatively in a continuous culture fermenting 50 mmol/l glucose. Extra acetate and butyrate were added up to 200 mmol/l at different pH values, and it turned out that only free butyric acid inhibited growth. The lower attainable growth rates of cultures producing comparable amounts of butyrate when fed with concentrated influents, strongly indicated substrate inhibition. Evidence is presented that transitions to low-conversion steady states predicted by the kinetic model, play a role and decrease the stability of the culture.Nomenclature D dilution rate, h-1 - Datt highest D using certain experimental procedure h-1 - Ki substrate inhibition constant, mol·m-3 - Kp product inhibition constant mol·m-3 - Ks substrate saturation constant, mol·m-3 - P concentration inhibitory product mol·m-3 - S substrate concentration, mol·m-3 - So influent substrate concentration, mol·m-3 - S max c substrate concentration at max c , mol·m-3 - S max h substrate concentration at max h , mol·m-3 - specific growth rate, h-1 - experimental realization of at Datt, h-1 - max maximum specific growth rate, h-1 - max c maximum attainable specific growth rate according to combined substrate/product inhibition model, h-1 - h 0 specific growth rate at S0 according to Haldane kinetics, h-1 - max c maximum attainable specific growth rate according to Haldane kinetics, h-1 - Yp yield inhibitory product, mol·mol-1 - Yx yield biomass, kg dry weight·kg-1 - bio biomass - EtOH ethanol - gluc glucose - HAc acetate - HBt butyrate - HCap caproate - HFo formate - HPr propionate - HVal valerate - prod produced - lact lactate  相似文献   

2.
We examined transepithelial transport of Ca2+ across the isolated opercular epithelium of the euryhaline killifish adapted to fresh water. The opercular epithelium, mounted in vitro with saline on the serosal side and fresh water (0.1 mmol·l–1 Ca2+) bathing the mucosal side, actively transported Ca2+ in the uptake direction; net flux averaged 20–30 nmol·cm–2·h–1. The rate of Ca2+ uptake varied linearly with the density of mitochondria-rich cells in the preparations. Ca2+ uptake was saturable, apparent K 1/2 of 0.348 mmol·l–1, indicative of a multistep transcellular pathway. Ca2+ uptake was inhibited partially by apically added 0.1 mmol·l–1 La3+ and 1.0 mmol·l–1 Mg2+. Addition of dibutyryl-cyclic adenosine monophosphate (0.5 mmol·l–1)+0.1 mmol·l–1 3-isobutyl-l-methylxanthine inhibited Ca2+ uptake by 54%, but epinephrine, clonidine and isoproterenol were without effect. Agents that increase intracellular Ca2+, thapsigargin (1.0 mol·l–1, serosal side), ionomycin (1.0 mol·l–1, serosal side) and the calmodulin blocker trifluoperazine (50 mol·l–1, mucosal side) all partially inhibited Ca2+ uptake. In contrast, apically added ionomycin increased mucosal to serosal unidirectional Ca2+ flux, indicating Ca2+ entry across the apical membrane is rate limiting in the transport. Verapamil (10–100 mol·l–1, mucosal side), a Ca2+ channel blocker, had no effect. Results are consistent with a model of Ca2+ uptake by mitochondria rich cells that involves passive Ca2+ entry across the apical membrane via verapamil-insensitive Ca2+ channels, intracellular complexing of Ca2+ by calmodulin and basolateral exit via an active transport process. Increases in intracellular Ca2+ invoke a downregulation of transcellular Ca2+ transport, implicating Ca2+ as a homeostatic mediator of its own transport.Abbreviations DASPEI 2-(4-dimethylaminostyryl)-N-ethylpyridinium iodide - db-cAMP dibutyryl-cyclic adenosine monophosphate - FW fresh water - G t transepithelial conductance - I sc short-circuit current - IBMX 3-isobutyl-1-methylxanthine - SW sea water - TFP trifluoperazine - V t transepithelial potential  相似文献   

3.
The effects of serotonin (5-hydroxytryptamine) on ventilation were investigated by continuous measurements of intrabuccal pressure in unrestrained eel. Intravenous administration of 5-hydroxytryptamine (30 g·kg-1) caused a large increase in ventilatory frequency (+100%) and amplitude (+140%). The 5-hydroxytryptamine-induced hyperventilation was blocked by the 5-HT3-receptor antagonists metoclopramide (1.0 mg·kg-1) or MDL72222 (1.0 mg·kg-1), and was insensitive to the 5-HT1/2-receptor antagonist methysergide (3.0 mg·kg-1) and to the 5-HT4-receptor antagonist DAU 6285 CL (3.0 mg·kg-1). The hyperventilatory response to 5-hydroxytryptamine could be mimicked by the 5-HT3 receptor agonist 1-phenylbiguanide (300 g·kg-1). These results strongly implicate the 5-HT3-receptor as the mediator of the 5-hydroxytryptamine-induced hyperventilation in eel.Abbreviations a.u. arbitrary units - 5-HT 5-hydroxytryptamine - SEM standard error of mean - VA ventilatory amplitude - VF ventilatory frequency - RBI 1-phenylbiguanide  相似文献   

4.
Biochemical and biophysical parameters, including D1-protein turnover, chlorophyll fluorescence, oxygen evolution activity and zeaxanthin formation were measured in the marine seagrassZostera capricorni (Aschers) in response to limiting (100 mol·m–2·–1), saturating (350 mol·m–2·s–1) or photoinhibitory (1100 mol·m–2·s–1) irradiances. Synthesis of D1 was maximal at 350 mol·m–2·s–1 which was also the irradiance at which the rate of photosynthetic O2 evolution was maximal. Degradation of D1 was saturated at 350 mol·m–2·s–1. The rate of D1 synthesis at 1100 mol·m–2·s–1 was very similar to that at 350 mol·m–2·s–1 for the first 90 min but then declined. At limiting or saturating irradiance little change was observed in the ratio of variable to maximal fluorescence (Fv/Fm) measured after dark adaptation of the leaves, while significant photoinhibition occurred at 1100 mol·m–2·s–1. The proportion of zeaxanthin in the total xanthophyll pool increased with increasing irradiance, indicative of the presence of a photoprotective xanthophyll cycle in this seagrass. These results are consistent with a high level of regulatory D1 turnover inZostera under non-photoinhibitory irradiance conditions, as has been found previously for terrestrial plants.We would like to thank Professor Peter Böger (Department of Plant Biochemistry, University of Konstanz, Germany) for the kind gift of D1 antibodies. This work was partly supported by a University of Queensland Enabling Grant to CC.  相似文献   

5.
The influence of far-red (FR; 700–800 nm) radiation on steady-state stomatal conductance and net photosynthesis in P. vulgaris has been studied. Whereas FR radiation alone was relatively ineffective, addition of FR to a background of white light (WL; predominantly 400–700 nm) resulted in increased stomatal conductance. Stomata exhibited a marked diurnal sensitivity to FR. The action maximum for enhancing stomatal conductance was near 714 nm. A combination of FR and infra-red (IR; >800 nm) enhanced net photosynthesis when added to a background of WL. When IR alone was added to WL, there was a net decrease in photosynthesis, indicating that it is the FR waveband which is responsible for the observed photosynthetic effects. Naturally occurring levels of FR radiation (235 mol·m-2·s-1) in vegetation-canopy shade enhanced net photosynthetic CO2 gain by 28% when added to a background of 55 mol·m-2·s-1 WL.Abbreviations BL blue - FR far-red - IR infra-red - PAR photosynthetically active radiation - R red - WL white light  相似文献   

6.
Summary Rates of O2 uptake across isolated perfused skin of bullfrogs (Rana catesbeiana) were measured in relation to blood flow at three levels of ambient O2 tension: normoxia (O2 tension=152 torr), hypoxia (12% O2, 87 torr) and hyperoxia (42% O2, 306 torr). At bulk perfusion rates ranging from 3.4 to 10.1 l·cm-2·min-1, O2 uptake was positively correlated with hemoglobin delivery rate in both normoxia and hyperoxia, but was independent of delivery rate in hypoxia. Mean O2 uptake in normoxia was 3.8 nmol O2·cm-2·min-1 at a delivery rate of 9.8 nmol·cm-2·min-1 and 6.5 nmol O2·cm-2·min-1 at a delivery rate of 28.3 nmol·cm-2·min-1. At any given bulk perfusion rate, oxygen uptake averaged about 49% lower in hypoxia than in normoxia, decreasing in proportion to the reduction of O2 tension difference between medium and blood. In hyperoxia, O2 uptake did not increase proportionally with the difference in O2 tension between blood and medium, averaging only 50% higher at a 2.4-fold greater O2 tension difference. Cutaneous diffusing capacity for O2 averaged 0.041 nmol O2·cm-2·torr-1·min-1 during the first hour of perfusion in normoxia, and was not affected by reduction of ambient O2 tension. The results indicate that cutaneous O2 uptake in hypoxia is highly diffusion limited, and consequently, increases in cutaneous perfusion can not effectively compensate for reduction of ambient O2 tension. In hyperoxia, O2 uptake may be substantially perfusion limited because of reduced blood O2 capacitance at high O2 saturations.Abbreviations O2 capacitance - C Hb hemoglobin concentration - D diffusing capacity - PO2 medium-blood PO2 difference - Hb flow, hemoglobin delivery rate - Hepes N-[2-Hydroxyethyl]piperacine-N-[2 ethanesulfonic acid] - L diff extent of diffusion limitation - MO2 oxygen uptake rate - PO2 oxygen tension - S O2 saturation  相似文献   

7.
Data for the maximum carboxylation velocity of ribulose-1,5-biosphosphate carboxylase, Vm, and the maximum rate of whole-chain electron transport, Jm, were calculated according to a photosynthesis model from the CO2 response and the light response of CO2 uptake measured on ears of wheat (Triticum aestivum L. cv. Arkas), oat (Avena sativa L. cv. Lorenz), and barley (Hordeum vulgare L. cv. Aramir). The ratio Jm/Vm is lower in glumes of oat and awns of barley than it is in the bracts of wheat and in the lemmas and paleae of oat and barley. Light-microscopy studies revealed, in glumes and lemmas of wheat and in the lemmas of oat and barley, a second type of photosynthesizing cell which, in analogy to the Kranz anatomy of C4 plants, can be designated as a bundle-sheath cell. In wheat ears, the CO2-compensation point (in the absence of dissimilative respiration) is between those that are typical for C3 and C4 plants.A model of the CO2 uptake in C3–C4 intermediate plants proposed by Peisker (1986, Plant Cell Environ. 9, 627–635) is applied to recalculate the initial slopes of the A(pc) curves (net photosynthesis rate versus intercellular partial pressure of CO2) under the assumptions that the Jm/Vm ratio for all organs investigated equals the value found in glumes of oat and awns of barley, and that ribulose-1,5-bisphosphate carboxylase is redistributed from mesophyll to bundle-sheath cells. The results closely match the measured values. As a consequence, all bracts of wheat ears and the inner bracts of oat and barley ears are likely to represent a C3–C4 intermediate type, while glumes of oat and awns of barley represent the C3 type.Abbreviations A net photosynthesis rate (mol·m-2·s-1) - Jm maximum rate of whole-chain electron transport (mol·e-·m-2·s-1) - pc (bar) intercellular partial pressure of CO2 - PEP phosphoenolpyruvate - PPFD photosynthetic photon flux density (mol quanta·m-2·s-1) - RuBPCase ribulose bisphosphate carboxylase/oxygenase - RuBP ribulose bisphosphate - Vm maximum carboxylation velocity of RuBPCase (mol·m-2·s-1) - T* CO2 compensation point in the absence of dissimilative respiration (bar)  相似文献   

8.
A 64-kilodalton (kDa) protein, situated in the lumen between the inner and outer envelopes of pea (Pisum sativum L.) chloroplasts (Soll and Bennett 1988, Eur. J. Biochem., 175, 301–307) is shown to undergo reversible phosphorylation in isolated mixed envelope vesicles. It is the most conspicuously labelled protein after incubation of envelopes with 33 nmol·1-1 [-32P]ATP whereas incubation with 50 mol·1-1 [-32P]ATP labels most prominently two outer envelope proteins (86 and 23 kDa). Half-maximum velocity for phosphorylation of the 64-kDa protein occurs with 200 nmol·1-1 ATP, and around 40 mol·1-1 ATP for phosphorylation of the 86- and 23-kDa proteins, indicating the operation of two distinct kinases. GGuanosine-, uridine-, cytidine 5-triphosphate and AMP are poor inhibitors of the labelling of the 64-kDa protein with [-32P]ATP. On the other hand, ADP has a potent influence on the extent of labelling (half-maximal inhibition at 1–5 mol·1-1). The ADP-dependent appearance of 32P in ATP indicates that ADP acts by reversal of kinase activity and not as a competitive inhibitor. However, the most rapid loss of 32P from pre-labelled 64-kDa protein occurs when envelope vesicles are incubated with ATP t1/2=15 s at 20 molsd1-1 ATP). This induced turnover of phosphate appears to be responsible for the rapid phosphoryl turnover seen in situ.Abbreviations LHCP ligh-harvesting chlorophyll-a/b-binding protein - S0.5 concentration giving half-maximal phosphorylation - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine  相似文献   

9.
Summary The dynamic reactions of B. glabrata on intravasal loads of 20–1000 g glucose·g live fresh wt-1 were studied in standard fed snails (SFS). Starved snails (SS) and snails infected with S. mansoni (IS) were given 100–500 g glucose·g fresh live wt-1. Mean hemolymph glucose level was 12.1 mg·100 ml-1 in SFS. It was not significantly lower in SS (10.7 mg·100 ml-1), but significantly reduced in IS (8.5 mg·100 ml-1). Since hemolymph volumes were significantly increased in SS, the amount of circulating glucose (pool) did not change (75 g·g body weight-1) compared to SFS (62 g·g-1). It was, however, reduced to 41 g·g-1 in IS. In SFS the circulating glucose pool had to be doubled to induce significantly elimination of the injected glucose. Tripled pools were eliminated with half-times of 45 min, whereas lower and higher glucose loads were eliminated significantly slower (half-times: 80–105 min). Glucose tolerance of SS was reduced: half-times were doubled, and metabolization of injected glucose was reduced. Since tissue fresh weights were lowered by 40%, absolute incorporation of 14C from labeled glucose was lowered, but specific incorporation (per mg) was higher than in SFS and IS. Glucose tolerance of IS was increased: metabolic clearance rates rose by 70% and half-times were shortened by 30%, though absolute and specific rates of 14C incorporation were lowered. However, IS lost 25% of the label to the water, whereas SFS lost 12% and SS only lost 8%. Using the antimetabolite 2-deoxyglucose, 80% of the losses proved to be glucose in IS, and 50% in SFS. The present results suggest the existence of a glucostatic regulation in B. glabrata with lower sensitivity and capacity than in mammals. As to glucose tolerance, the often reported parallelism in metabolic shifts induced by starvation and parasitic infection was not confirmed.Abbreviations SFS standard fed snails - SS starved snails - IS infected snails - MGG midgut-gland-gonad - RB rest of the bodymass - MCR metabolic clearance rate  相似文献   

10.
Uptake of phosphate in the light by Amphidinium carterae, Amphidinium klebsii, cultured and symbiotic Gymnodinium microadriaticum conformed to Michaelis-Menten type saturation kinetics with all organisms showing similar K m values, namely 0.005 to 0.016 M phosphorus. V max values were 0.009–0.32 nmol phosphorus · 105 cells-1 · 10 min-1. Phosphate uptake by all the dinoflagellates was greater in the dark than in the light. The metabolic inhibitor 3-(3,4-dichlorophenyl) 1,1-dimethylurea stimulated phosphate uptake in the light by A. carterae and A. klebsii, but inhibited uptake by cultured and symbiotic G. microadriaticum. Carbonylcyanide 3-chlorophenylhydrazone (CCCP) inhibited phosphate uptake by A. carterae and A. klebsii under both light and dark conditions. Uptake of phosphate by cultured and symbiotic G. microadriaticum in the light, but not in the dark, was inhibited by CCCP. Low concentrations of arsenate (5 g As · l-1) stimulated phosphate by A. carterae and A. klebsii, but inhibited uptake by cultured and symbiotic G. microadriaticum. High concentrations of arsenate (100 g As · l-1) did not affect uptake of phosphate by A. carterae and A. klebsii.  相似文献   

11.
Growth of autotrophically growing duck-weeds (Lemna gibba L., G1) was stimulated by sucrose. The rate of respiration increased when plants had been grown on sucrose (8.7 mol O2 g-1 fresh weight (FW) h-1) and was reduced after growth without sucrose in the dark or under longday conditions (2.5 mol O2 g-1 FW h-1). Photosynthesis was induced already by low light intensities (0.1 klx).Short-time application of glucose or sucrose stimulated respiration in proportion to the hexose uptake rate. Sucrose is probably not taken up as the disaccharide. The transported sugar species after addition of sucrose are its hexose moieties produced by the high activity of the cell wall invertase. Fructose stimulated to a lesser extent; mannitol induced no enhancement; 2-deoxyglucose slightly inhibited O2 uptake. After mild carbon starvation of the plants the uptake of glucose and 3-O-methylglucose proceeded without any lag phase, with similar saturation kinetics in both cases. The initial uptake rate at substrate saturation was 2.6 mol glucose g-1 FW h-1 in the dark. Light stimulated hexose uptake by 2 to 3 times. The results show that Lemna gibba has an energy-dependent constitutive system for hexose uptake.Abbreviation FW fresh weight - LD long day - SD short day  相似文献   

12.
The intracarotid injection method has been utilized to examine blood-brain barrier (BBB) glucose transport in normal mice, and after a 2-day fast. In anesthetized mice, cerebral blood flow (CBF) rates were reduced from 0.86 ml·min–1·gm–1 in control to 0.80 ml·min–1·gm–1 in fasted animals (p>0.05). Brain Uptake Indices were significantly (p<0.05) higher in fasted (plasma glucose =4.7 mM) than control (plasma glucose = 6.5 mM) mice, while plasma glucose was significantly lower. The maximal velocity (Vmax) for glucose transport was 1562±303 nmoles·min–1·g–1, and the half-saturation constant (Km =) 6.67±1.46 mM in normally fed mice. In fasted mice the Vmax was 2053±393 nmoles·min–1·g–1 (p>0.05), and the half-saturation constant (Km =) 7.30±1.60 mM (not significant, P>0.05). A rabbit polyclonal antiserum to a synthetic peptide encoding the 13 C-terminal amino acids of the human erythrocyte glucose transporter (GLUT-1) immunocytochemically confirmed that the mouse brain capillary endothelial glucose transporter is a GLUT-1 transporter, and immunoreactivity was similar in brain endothelia from fed and fasted animals. In conclusion, after a 2-day fast in the mouse, we saw significant reductions in forebrain weight (7%), and plasma glucose levels (27%). Increased brain glucose extraction (25%, p<0.05), and a 22% increase in the unsaturatedpermeability-surface area product (p<0.05) was also observed.  相似文献   

13.
Measurement of the light response of photosynthetic CO2 uptake is often used as an implement in ecophysiological studies. A method is described to calculate photosynthetic parameters, such as the maximum rate of whole electron transport and dissimilative respiration in the light, from the light response of CO2 uptake. Examples of the light-response curves of flag leaves and ears of wheat (Triticum aestivum cv. ARKAS) are shown.Abbreviations and symbols A net photosynthesis rate - D 1 rate of dissimilative respiration occurring in the light - f loss factor - I incident PPFD - I effective absorbed PPFD - J rate of whole electron transport - J m maximum rate of whole electron transport - p c intercellular CO2 partial pressure - PPFD photosynthetic photon flux density - q effectivity factor for the use of light (electrons/quanta) - absorption coefficient - I * CO2 compensation point in the absence of dissimilative respiration (bar) - II conversion factor for calculation of CO2 uptake from the rate of whole electron transport - convexity factor Gas-exchange rates relate to the projective area and are given in mol·m-2·s-1. Electron-transport rates are given in mol electrons·m-2·s-1; PPFD is given in mol quanta·m-2·s-1.  相似文献   

14.
Saliva was collected from the mandibular glands of anaesthetized common wombats (Vombatus ursinus) to ascertain maximal flow rates, salivary compostion and possible adaptations, particularly PO4 3- secretion, to assist digestion. After temporary catheterization of the main duct through its oral opening, salivary secretion was evoked at flow rates ranging from 0.02±0.002 (±SEM) ml·min-1 (0.7±0.07 l·min-1·kg body weight-1) to 0.4±0.05 ml·min-1(14±1.9 l·min-1·kg body weight-1) by ipsilateral intracarotid infusion of acetylcholine. The [Na+] (15±5.1 to 58±8.6 mmol·l-1) and [HCO3 -] (35±1.9 to 60±1.9 mmol·l-1) were positively correlated with salivary flow rate. The [K+] (58±5.2 to 30±2.4 mmol·l-1), [Ca2+] (10.4±1.67 to 4.1±0.44 mmol·l-1), [Mg2+] (0.94±0.137 to 0.17±0.032 mmol·l-1), [Cl-] (71±9.2 to 45±6.0 mmol·l-1), [urea] (9.3±0.79 to 5.1±0.54 mmol·l-1), H+ activity (29±1.6 to 17±1.6 nEq·l-1) and amylase activity (251±57.4 to 92±23.3 kat·l-1) were negatively correlated with flow. Both concentration and osmolality fell with increasing flow at the lower end of the flow range but osmolality always increased again by maximal flow whereas the relation between protein and flow was not consistent at the higher levels of flow and stimulation. Salivary [PO4 3+] was not correlated with flow and at 3–14% of the plasma concentration was extremely low. Thus, in contrast to its nearest relative, the koala (Phascolarctos cinereus), the wombat secretes little PO4 3+ presumably because it does not need high levels of PO4 3+ in its saliva to facilitate microbial digestion of plant fibre.Abbreviations bw body weight - ww wet weight  相似文献   

15.
Photoinhibition of photosynthesis was induced in intact leaves of Phaseolus vulgaris L. grown at a photon flux density (PFD; photon fluence rate) of 300 mol·m-2·s-1, by exposure to a PFD of 1400 mol·m-2·s-1. Subsequent recovery from photoinhibition was followed at temperatures ranging from 5 to 35°C and at a PFD of either 20 or 140 mol·m-2·s-1 or in complete darkness. Photoinhibition and recovery were monitored mainly by chlorophyll fluorescence emission at 77K but also by photosynthetic O2 evolution. The effects of the protein-synthesis inhibitors, cycloheximide and chloramphenicol, on photoinhibition and recovery were also determined. The results demonstrate that recovery was temperature-dependent with rates slow below 15°C and optimal at 30°C. Light was required for maximum recovery but the process was light-saturated at a PFD of 20 mol·m-2·s-1. Chloramphenicol, but not cycloheximide, inactivated the repair process, indicating that recovery involved the synthesis of one or more chloroplast-encoded proteins. With chloramphenicol, it was shown that photoinhibition and recovery occurred concomitantly. The temperature-dependency of the photoinhibition process was, therefore, in part determined by the effect of temperature on the recovery process. Consequently, photoinhibition is the net difference between the rate of damage and the rate of repair. The susceptibility of chilling-sensitive plant species to photoinhibition at low temperatures is proposed to result from the low rates of recovery in this temperature range.Abbreviations and symbols Da Dalton - Fo, Fm, Fv instantaneous, maximum, variable fluorescence emission - PFD photon flux density - PSII photosystem II - photon yield C.I.W.-D.P.B. Publication No. 871  相似文献   

16.
Summary Cellobiose oxidase from Phanerochaete chrysosporium was used for continuous monitoring of cellulase action on microcrystalline cellulose (Avicel). Two protocols are described, the parameter monitored being either the decline in electrode potential as ferricyanide is reduced or consumption of dioxygen. Most experiments used a commercial cellulase preparation from Trichoderma reesei and ferricyanide as acceptor. Within 1 min of an addition of cellulase, ferricyanide reduction reached a steady rate. This was converted into a rate of production of substrate for celobiose oxidase, in mol·min–1. Experiments were conducted either with a constant concentration of cellulase and increasing Avicel, or with constant Avicel and increasing cellulase. Kinetic analysis of the experiments with constant cellulase indicated a K mof 4.8 ± 1.0 (g cellulose)·1–1, which was close to the value predicted from binding studies. The specific activity of the cellulase was measured as 375±25 mol·(g cellulase)–1·min–1 in experiments with a high cellulose concentration, but was less than half this value when the cellulose was saturated with cellulase. The maximal rate of cellulose degradation was 9.6±1.3 mol·(g cellulose)–1·min–1.  相似文献   

17.
Transitions in growth irradiance level from 92 to 7 Em-2 s-1 and vice versa caused changes in the pigment contents and photosynthesis of Oscillatoria agardhii. The changes in chlorophyll a and C-phycocyanin contents during the transition from high to low irradiance (HL) were reflected in photosynthetic parameters. In the LH transition light utilization efficiencies of the cells changed faster than pigment contents. This appeared to be related to the lowering of light utilization efficiencies of photosynthesis. As a possible explanation it was hypothesized that excess photosynthate production led to feed back inhibition of photosynthesis. Time-scales of changes in the maximal rate of O2 evolution were discussed as changes in the number of reaction centers of photosystem II in relation to photosynthetic electron transport. Parameters that were subject to change during irradiance transitions obeyed first order kinetics, but hysteresis occurred when comparing HL with LH transients. Interpretation of first order kinetic analysis was discussed in terms of adaptive response vs changes in growth rate.Non-standard abbreviations Chla chlorophyll a - CPC C-phycocyanin - PS II photosystem II - PS I photosystem I - RC II reaction center of photosystem II - P photosynthetic O2-evolution - I irradiance, Em-2 s-1 - light utilization efficiency of cells, mmol O2·mg dry wt-1·h-1/Em-2 s-1 - light utilization efficiency of photosynthetic apparatus, mol O2·mol Chla -1·h-1/Em-2 s-1 - Pmax maximal rate of O2 evolution by cells, mol O2·mg dry wt-1·h-1 - Pmax maximal rate of O2 evolution by photosynthetic apparatus, mol O2·mol·Chla -1·h-1 - LL low light, E m-2 s-1 - HL high light, E m-2 s-1 - LH low to high light transition - HL high to low light transition - k specific rate of adaptation, h-1 - specific growth rate, h-1 - Q pool size of cell constituent, mol·mg dry wt-1 - q net synthesis rate of cell constituent, mol·mg dry wt-1·h-1  相似文献   

18.
Jorge J. Casal  Harry Smith 《Planta》1988,176(2):277-282
Under continuous white light (WL), extension growth of the first internode in Sinapis alba L. was promoted by low red (R): far-red (FR) ratios reaching the stem and-or the leaves. Conversely, the growth promotion by end-of-day light treatments was only triggered by FR perceived by the leaves and cotyledons, while FR given to the growning internode alone was tatally ineffective. Continuous WL+FR given to the internode was also in-effective if the rest of the shoot remained in darkness. Both the background stem growth, and the growth promotion caused by either an end-of-day FR pulse or continuous WL+FR given to the internode, increased with increasing fluence rates of WL given to the rest of the shoot. The increase by WL of the growth-stimulatory effect of low phytochrome photoequilibria in the internode appears to be mediated by a specific blue-light-absorbing photoreceptor, as blue-deficient light from sodium-discharge lamps, or from filtered fluorescent tubes, promoted background stem growth similarly to WL but did not amplify the response to the R:FR ratio in the internode. Supplementing the blue-deficient light (94 mol·m-2·s-1) with low fluence rates of blue (<9 mol·m-2·s-1) restored the promotive effect of low R:FR reaching the internode.Abbreviations BL blue light - FR far-red light - PAR photosynthetically active radiation - Pfr/P ratio between the FR-absorbing form and total phytochrome - R red light - SOX low-pressure sodium lamp - WL white light Supported by the Consejo Nacional de Investigaciones Cientificas y Técnicas (República Argentina) and the ORS scheme (UK)  相似文献   

19.
Jaleh Daie 《Planta》1987,171(4):474-482
The uptake of different sugars was studied in segments of isolated phloem from petioles of celery (Apium graveolens L.) in order to determine the kinetics and specificity of phloem loading in this highly uniform conductive tissue. The uptake kinetics of sucrose and the sugar alcohol, mannitol, which are both phloem-translocated, indicated presence of a single saturable system, while uptake of non-phloem sugars (glucose and 3-O-methylglucose) exhibited biphasic kinetics with lower uptake rates than those for sucrose and mannitol. The presence of unlabeled mannitol, 3-O-methylglucose and maltose in the incubation solution did not cause inhibition of labeled-sucrose uptake, indicating high carrier specificity and lack of sucrose hydrolysis in vivo. The pH optimum for sucrose uptake was 5–6. Furthermore, a rapid and transient alkalinization of the external media by sucrose indicated a sugar/H+-cotransport mechanism. Dual-labeling experiments showed that sucrose influx continued at a constant rate (V max=15 mol·h-1·(g FW)-1), whereas sucrose efflux was low and insensitive to external concentration. Therefore, the saturable uptake kinetics for sucrose did not appear to be the result of an equilibrium between rates of sucrose influx and efflux.Abbreviations 3-OMG 3-O-methylglucose - PCMBS p-chloromercuribenzene sulfonate - SE-CC sieve element-companion cell - VB vascular bundle  相似文献   

20.
The dorsal skin of the leech Hirudo medicinalis was used for electrophysiological measurements performed in Ussing chambers. The leech skin is a tight epithelium (transepithelial resistance = 10.5±0.5 k· cm-2) with an initial short-circuit current of 29.0±2.9 A·cm-2. Removal of Na+ from the apical bath medium reduced short-circuit current about 55%. Ouabain (50mol·l-1) added to the basolateral solution, depressed the short-circuit current completely. The Na+ current saturated at a concentration of 90 mmol Na+·l-1 in the apical solution (K M=11.2±1.8 mmol·l-1). Amiloride (100 mol·l-1) on the apical side inhibited ca. 40% of the Na+ current and indicated the presence of Na+ channels. The dependence of Na+ current on the amiloride concentration followed Michaclis-Menten kinetics (K i=2.9±0.4 mol·l-1). The amiloride analogue benzamil had a higher affinity to the Na+ channel (K i=0.7±0.2 mol·l-1). Thus, Na+ channels in leech integument are less sensitive to amiloride than channels known from vertebrate epithelia. With 20 mmol Na+·l-1 in the mucosal solution the tissue showed an optimum amiloride-inhibitable current, and the amiloride-sensitive current under this condition was 86.8±2.3% of total short-circuit current. Higher Na+ concentrations lead to a decrease in amiloride-blockade short-circuit current. Sitmulation of the tissue with cyclic adenosine monophosphate (100 mol·l-1) and isobutylmethylxanthine (1 mmol·l-1) nearly doubled short-circuit current and increased amiloride-sensitive Na+ currents by 50%. By current fluctuation analysis we estimated single Na+ channel current (2.7±0.9 pA) and Na+ channel density (3.6±0.6 channels·m-2) under control conditions. After cyclic adenosine monophosphate stimulation Na+ channel density increased to 5.4±1.1 channels·m-2, whereas single Na+ channel current showed no significant change (1.9±0.2 pA). These data present a detailed investigation of an invertebrate epithelial Na+ channel, and show the similarities and differences to vertebrate Na+ channels. Whereas the channel properties are different from the classical vertebrate Na+ channel, the regulation by cyclic adenosine monophosphate seems similar. Stimulation of Na+ uptake by cyclic adenosine monophosphate is mediated by an increasing number of Na+ channels.Abbreviations slope of the background noise component - ADH antidiuretic hormone - cAMP cyclic adenosine monophosphate - f frequency - f c coner frequency of the Lorentzian noise component - Hepes N-hydroxyethylpiperazine-N-ethanesulphonic acid - BMX isobutyl-methylxanthine - i Na single Na+ channel current - I Na max, maximal inhibitable Na+ current - I SC short circuit current - K i half maximal blocker concentration - K M Michaelis constandard error of the mean - S (f) power density of the Lorentzian noise component - S 0 plateau value of the Lorentzian noise component - TMA tetramethylammonium - Trizma TRIS-hydroxymethyl-amino-methane - V max maximal reaction velocity - V T transepithelial potential - K half maximal blocker concentration  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号