首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Self-organization of cellular structures is an emerging principle underlying cellular architecture. Properties of dynamic microtubules and microtubule-binding proteins contribute to the self-assembly of structures such as microtubule asters. In the fission yeast Schizosaccharomyces pombe, longitudinal arrays of cytoplasmic microtubule bundles regulate cell polarity and nuclear positioning. These bundles are thought to be organized from the nucleus at multiple interphase microtubule organizing centres (iMTOCs). Here, we find that microtubule bundles assemble even in cells that lack a nucleus. These bundles have normal organization, dynamics and orientation, and exhibit anti-parallel overlaps in the middle of the cell. The mechanisms that are responsible for formation of these microtubule bundles include cytoplasmic microtubule nucleation, microtubule release from the equatorial MTOC (eMTOC), and the dynamic fusion and splitting of microtubule bundles. Bundle formation and organization are dependent on mto1p (gamma-TUC associated protein), ase1p (PRC1), klp2p (kinesin-14) and tip1p (CLIP-170). Positioning of nuclear fragments and polarity factors by these microtubules illustrates how self-organization of these bundles contributes to establishing global spatial order.  相似文献   

2.
A nerve net model for the visual cortex of higher vertebrates is presented. A simple learning procedure is shown to be sufficient for the organization of some essential functional properties of single units. The rather special assumptions usually made in the literature regarding preorganization of the visual cortex are thereby avoided. The model consists of 338 neurones forming a sheet analogous to the cortex. The neurones are connected randomly to a retina of 19 cells. Nine different stimuli in the form of light bars were applied. The afferent connections were modified according to a mechanism of synaptic training. After twenty presentations of all the stimuli individual cortical neurones became sensitive to only one orientation. Neurones with the same or similar orientation sensitivity tended to appear in clusters, which are analogous to cortical columns. The system was shown to be insensitive to a background of disturbing input excitations during learning. After learning it was able to repair small defects introduced into the wiring and was relatively insensitive to stimuli not used during training.  相似文献   

3.
In animal cells, centrosomes nucleate microtubules that form polarized arrays to organize the cytoplasm. Drosophila presents an interesting paradox however, as centrosome-deficient mutant animals develop into viable adults. To understand this discrepancy, we analyzed behaviors of centrosomes and microtubules in Drosophila cells, in culture and in vivo, using a combination of live-cell imaging, electron microscopy, and RNAi. The canonical model of the cycle of centrosome function in animal cells states that centrosomes act as microtubule-organizing centers throughout the cell cycle. Unexpectedly, we found that many Drosophila cell-types display an altered cycle, in which functional centrosomes are only present during cell division. On mitotic exit, centrosomes disassemble producing interphase cells containing centrioles that lack microtubule-nucleating activity. Furthermore, steady-state interphase microtubule levels are not changed by codepleting both gamma-tubulins. However, gamma-tubulin RNAi delays microtubule regrowth after depolymerization, suggesting that it may function partially redundantly with another pathway. Therefore, we examined additional microtubule nucleating factors and found that Mini-spindles, CLIP-190, EB1, or dynein RNAi also delayed microtubule regrowth; surprisingly, this was not further prolonged when we codepleted gamma-tubulins. Taken together, these results modify our view of the cycle of centrosome function and reveal a multi-component acentrosomal microtubule assembly pathway to establish interphase microtubule arrays in Drosophila.  相似文献   

4.
Amniote epiblast cells differentiate into mesoderm and endoderm lineages during gastrulation through a process called epithelial-to-mesenchymal transition (EMT). Molecular regulation of gastrulation EMT is poorly understood. Here we show that epiblast epithelial status was maintained by anchoring microtubules to the basal cortex via CLIP-associated protein (CLASP), a microtubule plus-end tracking protein, and Dystroglycan, a transmembrane protein that bridges the cytoskeleton and basement membrane (BM). Mesoderm formation required down-regulation of CLASP and Dystroglycan, and reducing CLASP activity in pregastrulation epiblast cells caused ectopic BM breakdown and disrupted epiblast integrity. These effects were mediated through the CLASP-binding partner LL5. Live-imaging using EB1–enhanced GFP (eGFP) revealed that reducing CLASP and LL5 levels in the epiblast destabilized basal microtubules. We further show that Dystroglycan is localized to basolateral membrane in epiblast cells. Basal but not lateral localization of Dystroglycan was regulated by CLASP. We propose that epiblast–BM interaction requires CLASP- and Dystroglycan-mediated cortical microtubule anchoring, the disruption of which initiates gastrulation EMT.  相似文献   

5.
Coronavirus infection of polarized epithelial cells   总被引:2,自引:0,他引:2  
Epithelial cells are the first host cells to be infected by incoming coronaviruses. Recent observations in vitro show that coronaviruses are released from a specific side of these polarized cells, and this polarized release might be important for the spread of the infection in vivo. Mechanisms for the directional sorting of coronaviruses might be similar to those governing the polar release of secretory proteins.  相似文献   

6.
Membrane traffic in polarized epithelial cells   总被引:24,自引:0,他引:24  
Epithelial cells contain apical and basolateral surfaces with distinct compositions. Sorting of certain proteins to the basolateral surface involves the epithelial-specific mu 1b clathrin adaptor subunit. Recent results have shown that targeting to the basolateral surface utilizes the exocyst, whereas traffic to the apical surface uses syntaxin 3. Endocytosis at the apical surface is regulated by ARF6. Transcytosis of IgA is regulated by the p62Yes tyrosine kinase.  相似文献   

7.
Myosin-X (Myo10) is an unconventional myosin that localizes to the tips of filopodia and has critical functions in filopodia. Although Myo10 has been studied primarily in nonpolarized, fibroblast-like cells, Myo10 is expressed in vivo in many epithelia-rich tissues, such as kidney. In this study, we investigate the localization and functions of Myo10 in polarized epithelial cells, using Madin-Darby canine kidney II cells as a model system. Calcium-switch experiments demonstrate that, during junction assembly, green fluorescent protein-Myo10 localizes to lateral membrane cell-cell contacts and to filopodia-like structures imaged by total internal reflection fluorescence on the basal surface. Knockdown of Myo10 leads to delayed recruitment of E-cadherin and ZO-1 to junctions, as well as a delay in tight junction barrier formation, as indicated by a delay in the development of peak transepithelial electrical resistance (TER). Although Myo10 knockdown cells eventually mature into monolayers with normal TER, these monolayers do exhibit increased paracellular permeability to fluorescent dextrans. Importantly, knockdown of Myo10 leads to mitotic spindle misorientation, and in three-dimensional culture, Myo10 knockdown cysts exhibit defects in lumen formation. Together these results reveal that Myo10 functions in polarized epithelial cells in junction formation, regulation of paracellular permeability, and epithelial morphogenesis.  相似文献   

8.
IgA, IgG and IgM are transported across epithelial cells in a receptor-mediated process known as transcytosis. In addition to neutralizing pathogens in the lumen of the gastrointestinal, respiratory and urogenital tracts, these antibody-receptor complexes are now known to mediate intracellular neutralization of pathogens and might also be important in immune activation and tolerance. Recent studies on the intracellular transport pathways of antibody-receptor complexes and antibody-stimulated receptor-mediated transcytosis are providing new insight into the nature and regulation of endocytic pathways.  相似文献   

9.
The plant cortical microtubule array is a unique acentrosomal array that is essential for plant morphogenesis. To understand how this array is organized, we exploited the microtubule (+)-end tracking activity of two Arabidopsis EB1 proteins in combination with FRAP (fluorescence recovery after photobleaching) experiments of GFP-tubulin to examine the relationship between cortical microtubule array organization and polarity. Significantly, our observations show that the majority of cortical microtubules in ordered arrays, within a particular cell, face the same direction in both Arabidopsis plants and cultured tobacco cells. We determined that this polar microtubule coalignment is at least partially due to a selective stabilization of microtubules, and not due to a change in microtubule polymerization rates. Finally, we show that polar microtubule coalignment occurs in conjunction with parallel grouping of cortical microtubules and that cortical array polarity is progressively enhanced during array organization. These observations reveal a novel aspect of plant cortical microtubule array organization and suggest that selective stabilization of dynamic cortical microtubules plays a predominant role in the self-organization of cortical arrays.  相似文献   

10.
G. Kirfel  W. Stockem 《Protoplasma》1997,196(3-4):167-180
Summary Epithelial sponge cells (pinacocytes) contain a set of 50 to 60 microtubules radiating from the nuclear region to the cell periphery. Vacuoles of the endocytic pathway (endosomes, lysosomes) and mitochondria move along single microtubules in both directions; moreover, the ring-like arrangement of the Golgi apparatus around the nucleus and the net-like organization of the endoplasmic reticulum in the cytoplasmic matrix are also maintained, in an energy-dependent manner, by the microtubular system. Significant changes in the velocities of retrograde and anterograde transport as well as distinct differences in the sensitivity of organelle dynamics to ATPase inhibitors and ATP analogues indicate the existence of two microtubule-based motor proteins. Ion exchange chromatography of pinacocyte homogenates resulted in the enrichment of a 97 kDa kinesin-like protein (SKLP) with the ability to cross-react with antibodies against the kinesin heavy chain. Two other polypeptides, with molecular mass of 75 and 400 kDa, apparently belonging to a cytoplasmic dynein-like protein (SDLP) could be recognized in immunoblots with antibodies against the intermediate and heavy chains of cytoplasmic dynein. In addition, three MAP-like polypeptides (SMAPLPs), with molecular mass of 280, 250 and 70 kDa, obviously related to the MAP-2 and tau-family, have been identified. Immunocytochemical studies at the light and electron microscopical level localized SKLP, SDLP, and SMAPLPs at endocytic vacuoles and mitochondria, whereas the endoplasmic reticulum has SKLP and SMAPLPs, but the Golgi apparatus only SDLP.Abbreviations AMP-PNP 5-adenylylimidodiphosphate - ATP adenosinetriphosphate - DiOC6 (3) 3,3-dihexyloxacarbocyanine iodide - DTT 1,4-dithiothreitol - EDTA ethylenediaminetetraacetic acid - EGTA ethylene glycol-bis(-aminoethyl ether) - EHNA erythro-9-(2-hydroxy-3-nonyl)-adenine - EM electron microscope - ER endoplasmic reticulum - FPLC fast protein liquid chromatography - GA Golgi apparatus - GTP guanosinetriphosphate - HC heavy chain - HSS high-speed supernatant - IC intermediate chain - LC light chain - MAP microtubule-associated protein - MT microtubule - PIPES 1,4-piperazine-N, N-bis-(2-ethanesulfonic) acid - PMSF phenylmethylsulfonyl fluoride - SDLP sponge dynein-like protein - SDS-PAGE sodium-dodecyl-sulfate polyacrylamide gel electrophoresis - SKLP sponge kinesin-like protein - SMAPLPs sponge MAP-like proteins - UTP uridinetriphosphate  相似文献   

11.
Understanding how epithelial cells generate and maintain polarity and function requires live cell imaging. In order for cells to become fully polarized, it is necessary to grow them on a permeable membrane filter; however, the translucent filter obstructs the microscope light path required for quantitative live cell imaging. Alternatively, the membrane filter may be excised but this eliminates selective access to apical and basolateral surfaces. Conversely, epithelial cells cultured directly on glass exhibit different phenotypes and functions from filter grown cells. Here, we describe a new method for culturing polarized epithelial cells on a Transwell filter insert that allows superior live cell imaging with spatial and temporal image resolution previously unachievable using conventional methods. Cells were cultured on the underside of a filter support. Epithelial cells grown in this inverted configuration exhibit a fully polarized architecture, including the presence of functional tight junctions. This new culturing system permits four-dimensional (three spatial dimension over time) imaging of endosome and Golgi apparatus dynamics, and permits selective manipulation of the apical and basolateral surfaces. This new technique has wide applicability for visualization and manipulation of polarized epithelial cells.  相似文献   

12.
Although microtubules are known to be essential for chromosome segregation during cell division, they also play important roles in the regulation and function of cell polarity. Cell polarization is fundamental to appropriate tissue patterning and the regulation of cellular diversity during animal development. In polarized cells, microtubules are often organized asymmetrically along the polarity axis. Recent studies show that such asymmetry in microtubule organization is important to connect a cell's polarization with its polarized functions. In some cases, asymmetrically organized microtubule arrays themselves induce cell polarity. Here we present an overview of the mechanisms and functions of asymmetric microtubule organization and discuss the possible role of microtubule asymmetry in the symmetry-breaking that leads to cell polarization.  相似文献   

13.
Lectin-resistant mutants of polarized epithelial cells.   总被引:8,自引:0,他引:8       下载免费PDF全文
Two lectin-resistant mutants derived from Madin Darby canine kidney cells, with constitutive alterations in the asparagine-linked carbohydrate moieties, retained the characteristic structural and functional epithelial polarity of the parental cells. A ricin-resistant cell line was unable to incorporate galactose-sialic acid into glycoproteins and, from the pattern of cross-resistance to other lectins, appears to be different from previously described lines resistant to this lectin: the mutation in a concanavalin A-resistant line results, probably, in the production of defective carbohydrate cores of glycoproteins. In spite of glycosylation defects which result in an increased electrophoretic mobility of many cellular glycoproteins, both mutants retained the typical asymmetric structure of the plasma membrane (microvilli on the apical surface, junctional elements on the basolateral surface), functional tight junctions, and unidirectional active transport of electrolytes and water. These results suggest that glycoproteins with terminal galactose-sialic acid moieties are not critically involved in the development and maintenance of polarity in epithelial cells. The mutant cells, particularly the ricin-resistant line, exhibited, however, morphological and electrophysiological changes which suggest a quantitative effect of the mutations on intracellular traffic of membranes and tight junction formation. The cell lines described in this paper, the first lectin-resistant mutants of epithelial lineage, should prove useful tools for studying the peculiarities of glycosylating pathways in polarized cells.  相似文献   

14.
Coupled zones of f-actin and microtubule movement in polarized cells   总被引:1,自引:0,他引:1  
Interactions between the actin and microtubule cytoskeletons occur during cell polarization. Two papers in a recent issue of the Journal of Cell Biology use fluorescent speckle microscopy (FSM) to analyze the relationship between actin and microtubule movements in migrating epithelial cells and in polarizing neuronal growth cones.  相似文献   

15.
An important feature of enterocyte maturation is the asymmetrical distribution of cellular functions including protein localization. mRNA sorting is one mechanism for establishment and maintenance of this process in other systems, and we have previously demonstrated differential localization of mRNAs in human enterocytes. To study regulation of mRNA sorting, we established a model in polarized Caco-2 cells. Proxy cDNA constructs containing beta-galactosidase (beta-gal)/green fluorescence protein (GFP) and the 3'-untranslated region (3'-UTR) of either human sucrase-isomaltase or villin were transfected transiently or stably. A control construct contained poly-A sequence in place of 3'-UTR. Expression of GFP was observed by confocal microscopy; intracellular location of the construct mRNA was imaged by in situ hybridization. The sucrase-isomaltase mRNA proxy localized to an apical position in Caco-2 cells as in native enterocytes; the villin mRNA proxy did not show significant localization. The control construct was not localized and was found diffusely throughout the cell. Proxy GFP proteins tended to localize with their mRNA proxies, but with less precision. This study establishes a valuable model for the investigation of mRNA localization in intestinal epithelial cells. Mechanisms controlling asymmetrical distribution of intestinal mRNAs can be now be elucidated.  相似文献   

16.
Zhang L  Caplan MJ 《生理学报》2007,59(4):505-511
上皮组织细胞必须极化其表面区域以执行其转运生理功能。不同膜转运蛋白定位于细胞膜的不同区域,而细胞与细胞之间则须通过紧密连接复合体紧密连接成极化区域,并调节旁细胞途径的通透性。精密的机体要求上皮细胞具备一个筛选装置,用于将新合成的转运蛋白定位于合适的表面区域;转运蛋白本身也必须内含规定其功能位置的分选信号。目前上皮细胞蛋白分选和蛋白质之间相互作用已被逐渐阐明。上皮细胞通过细胞信号转导途径形成极化初始状态,将自己定位于特定位置,调节细胞与细胞之间、细胞与基质之问的相互作用。最近研究发现其信号转导通路的一个成员是一种AMP激活的蛋白激酶(AMP-stimulated protein kinase.AMPK),它也是细胞能量感受器。  相似文献   

17.
Regulation of membrane trafficking in polarized epithelial cells   总被引:1,自引:0,他引:1  
Polarized epithelial cells continuously sort transmembrane proteins to either apical or basolateral plasma membrane domains. Research in recent years has made tremendous progress in understanding the molecular mechanisms of the major pathways to either basolateral or apical domain. This understanding will help us elucidating how these pathways are interconnected in ensuring maintenance of cell polarity and integrity of epithelial monolayers.  相似文献   

18.
ARNO is a guanine-nucleotide exchange protein for the ARF family of GTPases. Here we show that in polarized epithelial cells, ARNO is localized exclusively to the apical plasma membrane, where it regulates endocytosis. Expression of ARNO stimulates apical endocytosis of the polymeric immunoglobulin receptor, and coexpression of ARF6 with ARNO leads to a synergistic stimulation of apical endocytosis. Expression of a dominant negative ARF6 mutant, ARF6-T27N, antagonizes this stimulatory effect. Deletion of the N-terminal coiled-coil (CC) domain of ARNO causes the mutant ARNO to localize to both the apical and basolateral plasma membranes. Expression of the CC domain alone abolishes ARNO-induced apical endocytosis as well as co-localization of IgA-receptor complexes with ARNO and clathrin. These results suggest that the CC domain contributes to the specificity of apical localization of ARNO through association with components of the apical plasma membrane. We conclude that ARNO acts together with ARF6 to regulate apical endocytosis.  相似文献   

19.
The plasma membrane of polarized epithelial cells is divided into apical and basolateral surfaces, with different compositions. Proteins can be sent directly from the trans-Golgi network (TGN) to either surface, or can be sent first to one surface and then transcytosed to the other. The glycosyl phosphatidylinositol anchor is a signal for apical targeting. Signals in the cytoplasmic domain containing a β-turn determine basolateral targeting and retrieval, and are related to other sorting signals. Transcytosed proteins, such as the polymeric immunoglobulin receptor (plgR), are endocytosed from the basolateral surface and then accumulate in a tubular compartment concentrated underneath the apical surface. This compartment, tentatively termed the apical recycling compartment, may be a central sorting station, as it apparently receives material from both surfaces and sorts them for delivery to the correct surface. Delivery to the apical surface from both the TGN and the apical recycling compartment appears to be regulated by protein kinases A and C, and endocytosis from the apical surface is also regulated by kinases. Transcytosis of the plgR is additionally regulated by phosphorylation of the plgR and by ligand binding to the plgR. Regulation of traffic in polarized epithelial cells plays a central role in cellular homeostasis, response to external signals and differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号