首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were done to assess the role of seed-transmission in the dissemination of peanut clump virus (PCV) in groundnut (Arachis hypogea L.), and the usefulness of enzyme-linked immunosorbent assay (ELISA) for detecting the virus in infected groundnut seed. The virus was present in 7.5% of seedling progeny from infected plants and could be detected in 16.5% of the seeds by ELISA. When groundnut seeds were grown in a field contaminated by the virus, it was shown that by roguing the infected plants, only 0.1% of the seeds from the remaining plants contained the virus. It was also established that the level of contamination of seeds by the virus was inversely proportional to the seed size.  相似文献   

2.
Purified preparations of particles of peanut clump virus (PCV) had A260/A280 values (corrected for light scattering) of 1.00. They contained rod-shaped particles with sedimentation coefficients of 183 S and 224 S, and a density in CsCl of 1.32 g/ml. PCV infected 36 species in 8 plant families. No serological relationship was detected between PCV and barley stripe mosaic, beet necrotic yellow vein, Nicotiana velutina mosaic and tobacco mosaic viruses. PCV was seed-borne for two generations in groundnut (Arachis hypogaea) but was not seed-borne in great millet (Sorghum arundinaceum), Phaseolus mungo or Nicotiana benthamiana. Seedlings of groundnut, great millet and wheat (Triticum aestivum) became infected when grown in soil from groundnut fields with outbreaks of clump disease, and the infectivity of soil survived air-drying at 25°C for 3 months. Groundnut seedlings became infected when grown in sterilised soil contaminated with washed roots of naturally-infected S. arundinaceum but not in soil to which roots of naturally infected groundnut or shoots of infected groundnut were added, or in which mechanically inoculated groundnut seedlings were grown at the same time. The patchy distribution of PCV in a crop was related to the infectivity of the soil for groundnut and to the presence of Polymyxa graminis resting spores which could be detected in the roots of S. arundinaceum bait seedlings, but not in those of groundnut. The results indicate that PCV is transmitted by a vector that is resistant to air-drying and closely associated with S. arundinaceum roots. For these reasons P. graminis is thought to be the vector of PCV.  相似文献   

3.
Groundnut (Arachis hypogaea) plants from Nigeria with chlorotic rosette disease contained a manually transmissible virus, considered to be a strain of groundnut rosette virus (GRV(C)). GRV(C) infected nine out of 32 species in three out of nine families. It caused local lesions without systemic infection in Chenopodium amaranticolor, C. murale and C. quinoa, and systemic symptoms in Glycine max, Nicotiana benthamiana, N. clevelandii and Phaseolus vulgaris as well as in groundnut. Some ‘rosette-resistant’ groundnut lines were also infected. GRV(C) was transmitted by Aphis craccivora, but only from groundnut plants that were also infected with an aphid-transmissible second virus, which was not manually transmissible and was considered to be groundnut rosette assistor virus (GRAV). Plants infected with GRAV contained isometric particles c. 25 nm in diameter which were detectable by immunosorbent electron microscopy on grids coated with antisera to several luteoviruses, especially with antisera to bean leaf roll, potato leafroll and beet western yellows viruses. No virus-like particles were observed in extracts from plants infected with GRV(C) alone. A single groundnut plant obtained from Nigeria with symptoms of green rosette contained luteovirus particles, presumed to be of GRAV, and yielded a manually transmissible virus that induced symptoms similar to those of GRV(C) in C. amaranticolor but gave only mild or symptomless infection of N. benthamiana and N. clevelandii. It was considered to be a strain of GRV and designated GRV(G).  相似文献   

4.
Intensive survcys of groundnut virus diseases were carried out in Senegal from 1986 to 1990. Peanut clump virus (PCV; furovirus group) was detected in several regions in groundnuts (Arachis hypogaea), showing typical symptoms namely, small dark green leaves, short petioles and internodes, and reduced shoot size resulting in a dwarfed and bushy appearance (clumping) of the infected plants. PCV was also detected in groundnuts exhibiting variable symptoms like chlorotic leaf spots, specking, chlorotic rings or ringspots, line patterns, vein yellowing, mottle or light mosaic etc. with or without clumping. Symptoms induced by these different isolates on the test plant Chenopodium amaranticolor also showed considerable variability. Serological studies of 41 isolates of PCV (collected from Senegal, Burkina Faso, Niger and India), using seven monoclonal antibodies in Triple Antibody Sandwich ELISA (TAS-ELISA), permitted us to distinguish five different serogroups based on their reaction profiles. However, these did not correspond to the five groups formed in an arbitrary classification based on the symptomatology of C. amaranticolor. Serogroups do not correlate with the geographic origin.  相似文献   

5.
A mechanically transmissible soil-borne virus causing peanut clump disease in Upper Volta is described. It infected mainly species of Chenopodia-ceae and was propagated in Chenopodium amaranticolor. Infectivity was lost from sap of C. amaranticolor after 10 min at 64 °C, and after dilution to 10-5 but not io-4. A purification procedure is described. The particles are rod-shaped and of two predominant lengths, 190 and 245 nm. The virus is not serologically related to tobacco rattle, pea early-browning, or soil-borne wheat mosaic viruses, or to a virus associated with a rhizomania-like disease of beet.  相似文献   

6.
The infection potential of sporosori of Polymyxa graminis involved in the transmission of the Indian peanut clump virus (IPCV) was assessed by culturing bait plants exposed to various concentrations of sporosorus suspensions and then determination of the numbers of plants that became infected. Storage of air-dried inoculum at temperatures above 30°C resulted in an increase in the infection potential compared to that of sporosori stored at 15°C or 20°C. In contrast, when the sporosori were stored at -20°C or freeze-dried, their infection potential was low. These results confirm the adaptation of P. graminis isolates associated with IPCV transmission to the tropical environment. The implication of storage temperature for the epidemiology of Indian peanut clump virus and for the assessment of the infection potential of the vector in the soil is discussed.  相似文献   

7.
Horsegram yellow mosaic disease was shown to be caused by a geminivirus; horsegram yellow mosaic virus (HYMV). The virus could not be transmitted by mechanical sap inoculation. Leaf dip and purified virus preparations showed geminate virus particles, measuring 15-18 * 30 nm. An antiserum for HYMV was produced and in enzyme-linked immunosorbent assay (ELISA) and immunosorbent electron microscopy (ISEM) tests HYMV was detected in leaf extracts of fieldinfected bambara groundnut, french bean, groundnut, limabean, mungbean, pigeonpea and soybean showing yellow mosaic symptoms. Bemisia tabaci fed on purified HYMV through a parafilm membrane transmitted the virus to all the hosts listed above but not to Ageratum conyzoides, okra, cassava, cowpea, Croton bonplandianus, Lab-lab purpureus, Malvastrum coromandalianum and tomato. No reaction was obtained in ELISA and ISEM tests between HYMV antibodies and extracts of plants diseased by whitefly-transmitted agents in India such as A. conyzoides yellow mosaic, okra yellow vein mosaic, C. bonplandianus, yellow vein mosaic, M. coromandalianum yellow vein mosaic, tomato leaf curl and cassava mosaic. HYMV was also not found to be related serologically to bean golden mosaic, virus.  相似文献   

8.
9.
A new virus, peanut stripe (PStV), isolated from groundnut (Arachis hypogaea) in the USA, induced characteristic striping, discontinuous vein banding along the lateral veins, and oakleaf mosaic in groundnut. The virus was also isolated from germplasm lines introduced from the People's Republic of China. PStV was transmitted by inoculation of sap to nine species of the Chenopodiaceae, Leguminosae, and Solanaceae; Chenopodium amaranticolor was a good local lesion host. PStV was also transmitted by Aphis craccivora in a non-persistent manner and through seed of groundnut up to 37%. The virus remained infective in buffered plant extracts after diluting to 10-3, storage for 3 days at 20°C, and heating for 10 min at 60°C but not 65°C. Purified virus preparations contained flexuous filamentous particles c. 752 nm long, which contained a major polypeptide of 33 500 daltons and one nucleic acid species of 3·1 × 106 daltons. In ELISA, PStV was serologically related to blackeye cowpea mosaic, soybean mosaic, clover yellow vein, and pepper veinal mottle viruses but not to peanut mottle, potato Y, tobacco etch, and peanut green mosaic viruses. On the basis of these properties PStV is identified as a new potyvirus in groundnut.  相似文献   

10.
A virus disease characterized by chlorotic vein banding, chlorotic line pattern along the margins or midrib of mature leaflets and chlorotic spots/rings was observed on commercial groundnut crops in Rayalaseema area of Andhra Pradesh with an incidence from 1% to nearly 60%. The virus was transmitted by mechanical inoculation in extracts prepared with 0.01 M potassium phosphate butter, pH 8.0 to 21 species from the Chenopodiaceae, Cruciferae, Leguminosae and Solanaceae, Chenopodium quinoa was found to be a good local lesion host. The virus was neither seed-transmitted through 1591 groundnut seeds nor aphid-transmitted by Aphis craccivora, Myzus persicae and Rhopalosiphum maidis either in non-persistent or semi-persistent manner. The virus remained infective in buffered tobacco leaf sap at a dilution of 10?5; in a 10?1 dilution of buffered sap the virus was infective for 2–3 days at 22–29°C or when heated to 65°C for 10 min but not to 70°C. Clarification treatments with organic solvents with 10% chloroform was least damaging. The virus was purified from Nicotiana rustica leaves. Purified virus contained isometric particles of 51 nm in diameter with an electron dense core of 22 nm and two major polypeptides of 76 kDa and 36 kDa. A polyclonal antiserum to this virus was produced. In agar gel double diffusion, enzyme-linked immunosorbent assay and in electro-blot immunoassay rests the virus was related to peanut chlorotic streak virus and not to cauliflower mosaic, figwort mosaic and soybean chlorotic mottle viruses.  相似文献   

11.
A very common and widespread virus pathogen of groundnut and soybean in East Africa was identified as peanut mottle virus (PnMV)* on the basis of particle morphology, serology, host range and reaction, transmission and physical properties. Virus concentration adequate for serological tests was obtained from cowpea (Vigna unguiculata) cultured at 27 °C but not at 23 °C. Purified preparations from this source gave a single, specific light-scattering zone in sucrose density gradients. PnMV was purified using 0.5 M sodium citrate buffer containing 1% mercapto-ethanol; an antiserum made against such preparations had a homologous titre of 1/8192. Groundnut and soya isolates from N., N.E., N.W. and S. districts of Uganda, N.W. Tanzania, and W. and E. (coastal) districts of Kenya were serologically similar and varied, within narrow limits, in symptoms induced in certain groundnut and soya varieties. A serologically related but distinct virus was isolated from Voandzeia subterranea. PnMV was not related serologically to any of ten viruses of the PVY group. Glasshouse experiments simulating groundkeeper conditions in the field indicated 20% seed transmission in groundnut; PnMV was transmitted by Aphis craccivora in the non-persistent manner. All twenty-one varieties and breeding lines of soybean tested were highly susceptible. The prevalence of PnMV in East Africa and the reduction in yield caused in groundnut indicates the virus to be economically important, and groundnut and soybean improvement programmes should include routine PnMV susceptibility tests.  相似文献   

12.
Viruses occurring in Cassia bicapsularis in Northern Tanzania, in Voandzeia subterranea in north western and eastern Tanzania, and in Phaseolus lunatus in the Kenya highlands, were all serologically related to peanut mottle virus. Their host ranges, and the symptoms they induced in test plants, were very similar, and they differed only in degree of virulence in some host species. The Voandzeia isolate did not infect groundnut, and only the Phaseolus isolate infected two species in the Cucurbitaceae. All the isolates infected Chenopodium amaranticolor, a species which formerly was reported as being immune to peanut mottle and thus considered of diagnostic value. In Africa, variation in peanut mottle virus isolates seems to be associated with host species and ecology, and there is at present no evidence for naturally occurring variants within a host species as occurs in groundnut in America. Three of the four isolates were purified by homogenising together infected leaf tissue, chloroform and 0.5 M sodium citrate buffer containing 1% 2-mercapto-ethanol at pH 8, in the proportion 1: 1:2 respectively, and precipitating the virus from the clarified homogenate with 5% w/v polyethylene glycol. When centrifuged in sucrose density gradients such preparations gave a single, bright specific light scat-tering zone with no haze.  相似文献   

13.
A virus causing ‘eyespot’ leaf symptoms in groundnut plants was transmitted by sap-inoculation and by Aphis craccivora in the non-persistent manner. It infected 16 of 72 species from five of 12 families and was easily propagated in Arachis hypogaea and Physalis floridana. The virus has particles c. 13 × 755 nm and is serologically closely related to soybean mosaic and pepper veinal mottle viruses, and more distantly to four other potyviruses. The virus differs in host range, in vitro properties and serological properties from previously described strains of soybean mosaic and pepper veinal mottle viruses. It seems to be a distinct member of the potyvirus group and we propose the name groundnut eyespot virus.  相似文献   

14.
As previously reported, narcissus latent virus (NLV) has flexuous filamentous particles measuring c. 650 nm × 13 nm, is manually transmissible to Nicotiana clevelandii and Tetragonia expansa, and is transmitted by the aphid Myzus persicae following brief acquisition access periods. In contrast to previous reports the virus particle protein has an apparent mol. wt of c. 45 kD. Moreover, infected cells in N. clevelandii leaves contain cytoplasmic inclusion bodies resembling those of potyviruses. In vitro translation of NLV RNA produced only one major product (mol. wt c. 25 kD) which was not precipitated by antisera to virus particle protein or to cytoplasmic inclusion protein. Antisera to 12 potyviruses and nine carlaviruses failed to react with sap containing NLV particles. Similarly antiserum to NLV particles did not react with particles of seven potyviruses or four carlaviruses. A weak reaction was detected between NLV particles and antiserum to particles of maclura mosaic virus (MMV), a virus which resembles NLV in particle morphology and particle-protein size, and in inducing pinwheel inclusions. The cytoplasmic inclusion proteins (CIPs) of NLV, MMV and from narcissus plants with yellow stripe symptoms were serologically inter-related. These proteins were also serologically related to, and had mol. wt similar to, the CIP of members of the potyvirus group. Particles with the size and antigenic specificity of those of NLV were found consistently in narcissus plants with yellow stripe disease. Narcissus latent and narcissus yellow stripe viruses therefore seem to be synonymous and, together with MMV, have properties distinct from those of any previously described virus group.  相似文献   

15.
Hypochoeris mosaic virus (HMV) is common in Hypochoeris radicata (‘cat's ear’) in western Canada. It infected 10 of 53 mechanically inoculated species in five of twelve families, but was not transmitted by aphids or through seed or soil. Sap from infected Nicotiana clevelandii was sometimes infective after dilution to 10-1 and occasionally 102, after 10 min at 45 but not 50°C, and after 1 but not 2 days at 20°C. Infectivity of crude nucleic acid extracts from infected leaves was rapidly abolished by RNase but not by DNase. Host sap contained very few rod-shaped particles or particle fragments mostly 21.0–22.5 nm in diameter, and up to 420 nm long but with predominant lengths of 120–140 and 240–260 nm. Many rods in purified virus preparations were less than 240 nm long, and the majority were c. 140 nm or shorter. The particles had a helical substructure with a pitch of 2.58 nm and contained a single type of protein of estimated mol. wt 24.5 × 103. HMV showed no serological relationship to eight morphologically similar viruses (beet necrotic yellow vein, broad bean necrosis, barley stripe mosaic, peanut clump, potato mop-top, Nicotiana velutina mosaic, wheat soil-borne mosaic and defective strains of tobacco mosaic). It is probably a hitherto undescribed tobamovirus.  相似文献   

16.
Leafhopper transmission of a virus causing maize wallaby ear disease   总被引:7,自引:0,他引:7  
A virus causing maize wallaby ear disease was transmitted experimentally by Cicadulina bimaculata to fourteen species of monocotyledonous plants. It was also transmitted by Nesoclutha pallida, and by grafting. The symptoms obtained resemble closely those reported for maize leaf gall disease in the Philippines and maize rough dwarf virus in Italy and Israel. About 85% of C. bimaculata caught in the field carried maize wallaby ear virus (MWEV), and many of their progeny were viruliferous even when not allowed access to infected plants. The proportion of infective individuals in clones bred for nine generations from selected non-transmitting adults decreased from 85% in the first nymphs to less than 1%; such individuals were difficult to rear, as their fecundity and longevity decreased greatly. N. pallida transmitted MWEV after injection with partially purified extracts of infected plants. Spherical particles c. 85 nm in diameter were found in the salivary glands of viruliferous C. bimaculata, but not in those of non-transmitting individuals. The particles occurred in tubules in the cytoplasm and each had a densely stained core c. 50 nm in diameter. Particles similar in size to the core were found in extracts of infected but not uninfected maize, and in extracts of viruliferous but not in non-viruliferous C. bimaculata and N. pallida.  相似文献   

17.
A virus, now named peanut green mosaic virus (PGMV), was isolated from groundnut (Arachis hypogaea) in India and identified as a member of the potato virus Y group by electron microscopy, aphid transmission, and its chemical properties. It was sap transmissible to 16 species of the Leguminosae, Solanaceae, Chenopodiaceae, Aizoaceae and Pedaliaceae; Phaseolus vulgaris was a good local lesion host. PGMV remained infective in buffered groundnut leaf sap at dilutions of 10-3 after 3 to 4 days at 25 °C, or heating for 10 min to 55 °C but not 60 °C. PGMV was transmitted in the non-persistent manner by Aphis gossypii and Myzus persicae but was not seed-borne. Purified virus preparations contained flexuous filamentous particles c. 750 nm long which sedimented as a single component with a sedimentation coefficient (S°20w) of 171S, and contained a single polypeptide (mol. wt 34 500 daltons) and one nucleic acid species (mol. wt 3.25 × 106 daltons). PGMV is serologically unrelated to peanut mottle virus (PMV) and other viruses infecting leguminous crops. Infected leaves contained cylindrical, cytoplasmic inclusions.  相似文献   

18.
A serious disease of groundnut (Arachis hypogaea L.) characterized by stunting of plants, downward rolling, mottling, general chlorosis and reduced size of the leaflets was observed in the Sudan. Surveys conducted from 1992 to 1994 showed that this disease was restricted to irrigated groundnut crops grown between the two Niles. The virus had slightly flexuous filamentous particles (626 nm long) and was transmitted by whiteflies. It was identified serologically as cowpea mild mottle virus (CPMMV). This appears to be the first record of natural occurrence of CPMMV on groundnut in the Sudan and the first evidence that it causes a disease of major economic importance.  相似文献   

19.
Tobacco yellow vein, a disease found in Malawi, is caused by a combination of two viruses transmitted in the persistent manner by aphids. One component, tobacco yellow vein virus (TYVV) is manually transmissible, but aphids transmit it only from plants also containing the other (assistor) component, which is not manually transmissible. Aphids also transmit TYVV from plants containing either of two other assistor viruses - tobacco vein-distorting and groundnut rosette assistor. A virulent isolate of TYVV infected Soja max, Arachis hypogaea and several solanaceous species. It infected plants already containing tobacco mottle or groundnut rosette viruses but not those containing a mild isolate of TYVV.  相似文献   

20.
During field surveys, three peanut green mosaic virus isolates differing in symptomatology on groundnut and a few other hosts were collected. Ultrathin sections of infected groundnut leaflets showed cytoplasmic inclusions with pin wheels and scrolls. In enzyme-linked immunosorbent assay they reacted strongly with antisera to peanut green mosaic and soybean mosaic virus antisera, and moderately with adzuki bean mosaic and peanut stripe virus antisera. All isolates also reacted positively with antisera to peanut eye spot, blackeye cowpea mosaic, pea seed-borne mosaic, potato virus Y and tobacco etch viruses, and did not react with antisera to peanut mottle, bean yellow mosaic, bean common mosaic, clover yellow vein and sugarcane mosaic viruses. SDS-PAGE analysis of purified virus preparations of the three isolates showed a single polypeptide with mol. wt. of 34,500 daltons. Based on these results, the three isolates are identified as biologically distinct strains of peanut green mosaic virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号