首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibrinogen, the major structural precursor of blood clots, was deglycosylated by peptide-N-(N-acetyl-beta-glucosaminyl)asparagine amidase without denaturation of the polypeptide chains. Deglycosylated fibrinogen behaved normally in clinical coagulation assays, although it is less soluble than normal fibrinogen. However, the turbidity of clots formed from deglycosylated fibrinogen always rose faster and higher than that of clots from normal fibrinogen. Scanning and transmission electron microscopy demonstrated that fibrin made from clots of deglycosylated fibrinogen consisted of thicker, less-branched fiber bundles in a more porous network. Moreover, the degree of lateral aggregation was directly related to clot turbidity and inversely related to branching. Deglycosylation promoted turbidity development, lateral aggregation, and porosity of clots under all conditions tested. All other steps in the coagulation pathways appeared to be unaffected by the absence of carbohydrate. These results suggest that carbohydrate constitutively affects the behavior of deglycosylated fibrinogens by 1) contributing a repulsive force that promotes fibrinogen solubility and limits fibrin assembly and 2) sensitizing fibrin to conditions that influence assembly and clot structure.  相似文献   

2.
Although much is known about fibrin polymerization, because it is complex, the effects of various modifications are not intuitively obvious and many experimental observations remain unexplained. A kinetic model presented here that is based on information about mechanisms of assembly accounts for most experimental observations and allows hypotheses about the effects of various factors to be tested. Differential equations describing the kinetics of polymerization were written and then solved numerically. The results have been related to turbidity profiles and electron microscope observations. The concentrations of intermediates in fibrin polymerization, and fiber diameters, fiber and protofibril lengths have been calculated from these models. The simplest model considered has three steps; fibrinopeptide A cleavage, protofibril formation, and lateral aggregation of protofibrils to form fibers. The average number of protofibrils per fiber, which is directly related to turbidity, can be calculated and plotted as a function of time. The lag period observed in turbidity profiles cannot be accurately simulated by such a model, but can be simulated by modifying the model such that oligomers must reach a minimum length before they aggregate. Many observations, reported here and elsewhere, can be accounted for by this model; the basic model may be modified to account for other experimental observations. Modeling predicts effects of changes in the rate of fibrinopeptide cleavage consistent with electron microscope and turbidity observations. Changes only in the rate constants for initiation of fiber growth or for addition of protofibrils to fibers are sufficient to account for a wide variety of other observations, e.g., the effects of ionic strength or fibrinopeptide B removal or thrombospondin. The effects of lateral aggregation of fibers has also been modeled: such behavior has been observed in turbidity curves and electron micrographs of clots formed in the presence of platelet factor 4. Thus, many aspects of clot structure and factors that influence structure are directly related to the rates of these steps of polymerization, even though these effects are often not obvious. Thus, to a large extent, clot structure is kinetically determined.  相似文献   

3.
Factor VII Activating Protease (FSAP) is a plasma protease affecting both coagulation and fibrinolysis. Although a role in hemostasis is still unclear, the identification of additional physiologic substrates will help to elucidate its role in this context. FSAP has been reported to cleave fibrinogen, but the functional consequences of this are not known. We have therefore undertaken this study to determine the implications of this cleavage for fibrin-clot formation and its lysis. Treatment of human fibrinogen with FSAP released an N-terminal peptide from the Bβ chain (Bβ1-53) and subsequently the fibrinopeptide B; within the Aα chain a partial truncation of the αC-region by multiple cleavages was seen. The truncated fibrinogen showed a delayed thrombin-catalyzed polymerization and formed fibrin clots of reduced turbidity, indicative of thinner fibrin fibers. Confocal laser scanning and scanning electron microscopy of these clots revealed a less coarse fibrin network with thinner fibers and a smaller pore size. A lower pore size was also seen in permeability studies. Unexpectedly, FSAP-treated fibrinogen or plasma exhibited a significantly faster tPA-driven lysis, which correlated exclusively with cleavage of fibrinogen and not with activation of plasminogen activators. Similar observations were also made in plasma after activation of endogenous zymogen FSAP, but not in plasma of carrier of the rare Marburg I single nucleotide polymorphism. In conclusion, altering fibrin clot properties by fibrinogenolysis is a novel function of FSAP in the vasculature, which facilitates clot lysis and may in vivo contribute to reduced fibrin deposition during thrombosis.  相似文献   

4.
Low concentrations of actin filaments (F-actin) inhibit the rate and extent of turbidity developed during polymerization of purified fibrinogen by thrombin. Actin incorporates into the fibrin clot in a concentration-dependent manner that does not reach saturation, indicating nonspecific trapping of actin filaments in the fibrin network. Actin does not retard activation of fibrinogen by thrombin, but rather the alignment of fibrin protofibrils into bundles which constitute the coarse clot. In contrast, equivalent F-actin concentrations have little or no effect on the turbidity of plasma clots. The difference is attributed to the presence of a plasma protein, gelsolin, that severs actin filaments. Purified gelsolin greatly reduces the effect of F-actin on the turbidity of a pure fibrin clot and decreases the fraction of actin incorporated by the clot. A calculation of the extent to which the gelsolin concentrations used in these experiments reduce the fraction of actin filaments which are long enough to impede each other's rotational diffusion indicates that it is the overlapping actin filaments which retard the association of fibrin protofibrils. The findings suggest that one role for the F-actin depolymerizing and particularly actin severing activities in blood is to prevent actin filaments released by tissue injury from interfering with the formation of coarse fibrin clots.  相似文献   

5.
G Marx 《Biopolymers》1987,26(6):911-920
During the course of studies with fibrin protofibrils, produced by adding hirudin to thrombin-activated fibrinogen prior to the onset of gelation, turbid clots were observed to be generated merely by adding Ca(II) or Zn(II) to protofibrils. The rate of gelation (CT) and turbidity of the “protofibrin” clots increases with cation levels in a concentration-dependent manner, with Zn(II) much more potent than Ca(II). For example, 50 μM Zn(II) generated a more turbid protofibrin clot than 0.5 mM Ca(II). In combination, levels of Zn(II) and Ca(II), which individually have no effect, induce protofibril gelation. The generation of protofibrin clots by Zn(II) is decreased at increasing ionic strength. Apparently, the underlying electrostatic forces that bind the monomers in fibrin and protofibrin gels are similar. SEM micrographs show that Ca(II)- or Zn(II)-induced protofibrin clots (600–1500Å thick) are essentially indistinguishable from those formed directly from fibrinogen and thrombin with divalent cation. The protofibrin fibers induced by the cations are thicker than the fibers formed directly from fibrinogen and thrombin in the absence of divalent cation. Branching appears brought about the the divalent cation-sensitive lateral association of different protofibril strands. These findings describe simple experimental methods for separately studying the early and late stages of fibrin gelation.  相似文献   

6.
Studies suggest that patients with deep vein thrombosis and diabetes often have hypercoagulable blood plasma, leading to a higher risk of thromboembolism formation through the rupture of blood clots, which may lead to stroke and death. Despite many advances in the field of blood clot formation and thrombosis, the influence of mechanical properties of fibrin in the formation of thromboembolisms in platelet-poor plasma is poorly understood. In this paper, we combine the concepts of reactive molecular dynamics and coarse-grained molecular modeling to predict the complex network formation of fibrin clots and the branching of fibrin monomers. The 340-kDa fibrinogen molecule was converted into a coarse-grained molecule with nine beads, and using our customized reactive potentials, we simulated the formation and polymerization process of a fibrin clot. The results show that higher concentrations of thrombin result in higher branch-point formation in the fibrin clot structure. Our results also highlight many interesting properties, such as the formation of thicker or thinner fibers depending on the thrombin concentration. To the best of our knowledge, this is the first successful molecular polymerization study of fibrin clots to focus on thrombin concentration.  相似文献   

7.
Blood clot formation is crucial to maintain normal physiological conditions but at the same time involved in many diseases. The mechanical properties of the blood clot are important for its functioning but complicated due to the many processes involved. The main structural component of the blood clot is fibrin, a fibrous network that forms within the blood clot, thereby increasing its mechanical rigidity. A constitutive model for the maturing fibrin network is developed that captures the evolving mechanical properties. The model describes the fibrin network as a network of fibers that become thicker in time. Model parameters are related to the structural properties of the network, being the fiber length, bending stiffness, and mass-length ratio. Results are compared with rheometry experiments in which the network maturation is followed in time for various loading frequencies and fibrinogen concentrations. Three parameters are used to capture the mechanical behavior including the mass-length ratio. This parameter agrees with values determined using turbidimetry experiments and is subsequently used to derive the number of protofibrils and fiber radius. The strength of the model is that it describes the mechanical properties of the maturing fibrin network based on it structural quantities. At the same time the model is relatively simple, which makes it suitable for advanced numerical simulations of blood clot formation during flow in blood vessels.  相似文献   

8.
Blood clot formation is crucial to maintain normal physiological conditions but at the same time involved in many diseases. The mechanical properties of the blood clot are important for its functioning but complicated due to the many processes involved. The main structural component of the blood clot is fibrin, a fibrous network that forms within the blood clot, thereby increasing its mechanical rigidity. A constitutive model for the maturing fibrin network is developed that captures the evolving mechanical properties. The model describes the fibrin network as a network of fibers that become thicker in time. Model parameters are related to the structural properties of the network, being the fiber length, bending stiffness, and mass-length ratio. Results are compared with rheometry experiments in which the network maturation is followed in time for various loading frequencies and fibrinogen concentrations. Three parameters are used to capture the mechanical behavior including the mass-length ratio. This parameter agrees with values determined using turbidimetry experiments and is subsequently used to derive the number of protofibrils and fiber radius. The strength of the model is that it describes the mechanical properties of the maturing fibrin network based on it structural quantities. At the same time the model is relatively simple, which makes it suitable for advanced numerical simulations of blood clot formation during flow in blood vessels.  相似文献   

9.
The success of clot thrombolysis very much depends on efficient clot permeation with blood plasma carrying the thrombolytic agent. In this paper clot permeation was studied by dynamic magnetic resonance imaging (MRI) on artificial non-occlusive blood clots inserted in an artificial circulation system filled with blood plasma to which an MRI contrast agent was added. The MRI results revealed that clot permeation is much faster and more efficient at the entrance of the flow channel across the clot. Clot permeation with fluid was simulated numerically as well. The simulation was based on numerical solution of Navier-Stokes equations for the flow in the channel and within the clot. The clot was considered as a porous material with known permeability and porosity. Based on the calculated velocity profiles, concentration profiles of fluid in the clot were modelled. These agreed well with the MRI results. The presented model of clot permeation with fluid may also serve as a useful extension to numerical modelling of dissolution of non-occlusive blood clots during thrombolytic therapy.  相似文献   

10.
Structural origins of fibrin clot rheology   总被引:9,自引:0,他引:9       下载免费PDF全文
The origins of clot rheological behavior associated with network morphology and factor XIIIa-induced cross-linking were studied in fibrin clots. Network morphology was manipulated by varying the concentrations of fibrinogen, thrombin, and calcium ion, and cross-linking was controlled by a synthetic, active-center inhibitor of FXIIIa. Quantitative measurements of network features (fiber lengths, fiber diameters, and fiber and branching densities) were made by analyzing computerized three-dimensional models constructed from stereo pairs of scanning electron micrographs. Large fiber diameters and lengths were established only when branching was minimal, and increases in fiber length were generally associated with increases in fiber diameter. Junctions at which three fibers joined were the dominant branchpoint type. Viscoelastic properties of the clots were measured with a rheometer and were correlated with structural features of the networks. At constant fibrinogen but varying thrombin and calcium concentrations, maximal rigidities were established in samples (both cross-linked and noncross-linked) which displayed a balance between large fiber sizes and great branching. Clot rigidity was also enhanced by increasing fiber and branchpoint densities at greater fibrinogen concentrations. Network morphology is only minimally altered by the FXIIIa-catalyzed cross-linking reaction, which seems to augment clot rigidity most likely by the stiffening of existing fibers.  相似文献   

11.
The differences between coarse and fine fibrin clots first reported by Ferry have been interpreted in terms of nonspecific ionic strength effects for nearly 50 years and have fostered the notion that fibrin polymerization is largely controlled by electrostatic forces. Here we report spectroscopic and electron microscopy studies carried out in the presence of different salts that demonstrate that this long-held interpretation needs to be modified. In fact, the differences are due entirely to the specific binding of Cl- to fibrin fibers and not to generic ionic strength or electrostatic effects. Binding of Cl- opposes the lateral aggregation of protofibrils and results in thinner fibers that are also more curved than those grown in the presence of inert anions such as F-. The effect of Cl- is pH dependent and increases at pH > 8.0, whereas fibers grown in the presence of F- remain thick over the entire pH range from 6.5 to 9.0. From the pH dependence of the Cl- effect it is suggested that the anion exerts its role by increasing the pKa of a basic group ionizing around pH 9.2. The important role of Cl- in structuring the fibrin clot also clarifies the role played by the release of fibrinopeptide B, which leads to slightly thicker fibers in the presence of Cl- but actually reduces the size of the fibers in the presence of F-. This effect becomes more evident at high, close to physiological concentrations of fibrinogen. We conclude that Cl- is a basic physiological modulator of fibrin polymerization and acts to prevent the growth of thicker, stiffer, and straighter fibers by increasing the pKa of a basic group. This discovery opens new possibilities for the design of molecules that can specifically modify the clot structure by targeting the structural domains responsible for Cl- binding to fibrin.  相似文献   

12.
Effects of thrombospondin on fibrin polymerization and structure   总被引:4,自引:0,他引:4  
Thrombospondin (TSP) is a trace protein in plasma but is released in high concentrations from alpha-granules of activated platelets during hemostasis. It binds to the platelet membrane and becomes incorporated into fibrin clots. A variety of approaches were taken to learn the effects of TSP on fibrin polymerization and structure. 125I-TSP and 125I-fibrinogen were used to study the effect of TSP concentration on the extent of TSP and fibrin incorporation. Turbidity at 600 nm was used to monitor the time course of polymerization. Wavelength dependence of the turbidity was used to calculate the mass to length ratio, fiber diameter, and fiber density of fibrin formed in the presence and absence of TSP. Morphologies of control and TSP-containing clots were examined by electron microscopy following critical point drying. The initial TSP concentration influenced the amount of TSP incorporated but did not alter the extent of fibrin polymerization. TSP, in a concentration-dependent manner, reduced the lag time to turbidity rise and caused formation of more numerous but thinner fibers. Except for their diameter, these fibers were identical to fibers of control fibrin in terms of density and morphology. It is proposed that TSP interacts with fibrin intermediates to accelerate fiber growth, perhaps by serving as a trifunctional branching unit during network formation. The properties of fibrin around aggregating platelets, therefore, may be influenced considerably by secreted TSP.  相似文献   

13.
Mass–length ratios of fibers in fibrin gels were obtained from measurements of the angular dependence of the intensity of light scattered by dilute gels and from the permeability of more concentrated gels. The permeability was determined by measuring the forced flow of buffer through a short column of gel held in a glass tube. The results obtained with the two methods are consistent. At high pH and high ionic strength the mass–length ratio is found to be that calculated for a protofibril, i.e., a double strand of fibrin molecules laid end to end at a separation of 450 Å. This same value is found under conditions where the polymerized fibrin is not gelled (pH 10.25) and where it is just gelled (pH 10.0). At pH 7.4, ionic strength 0.35, the fibers are found to have a higher mass–length ratio, the average fiber consisting of some three protofibrils associated laterally. At pH 7.4 and low ionic strength (0.10 M) the fibers are up to a hundred times more massive.  相似文献   

14.
《Biophysical journal》2021,120(20):4547-4556
Mechanical thrombectomy has become the standard treatment for patients with an acute ischemic stroke. In this approach, to remove blood clots, mechanical force is applied using thrombectomy devices, in which the interaction between the clot and the device could significantly affect the clot retrieval performance. It is expected that the finite element method (FEM) could visualize the mechanical interaction by the visualization of the stress transmission from the device to the clot. This research was aimed at verifying the constitutive theory by implementing FEM based on the visco-hyperelastic theory, using a three-dimensional clot model. We used the visco-hyperelastic FEM to reproduce the mechanical behavior of blood clots, as observed in experiments. This study is focused on the mechanical responses of clots under tensile loading and unloading because in mechanical thrombectomy, elongation is assumed to occur locally on the clots during the retrieval process. Several types of cylindrical clots were created by changing the fibrinogen dose. Tensile testing revealed that the stiffness (E0.45-value) of clots with fibrinogen could be more than three times higher than that of clots without fibrinogen. It was also found that the stiffness was not proportional to the fibrinogen dose. By fitting to the theoretical curve, it was revealed that the Mooney-Rivlin model could reproduce the hyperelastic characteristics of clots well. From the stress-relaxation data, the three-chain Maxwell model could accurately fit the experimental viscoelastic data. FEM, taking the theoretical models into account, was then carried out, and the results matched well with the experimental visco-hyperelastic characteristics of clots under tensile load, reproducing the mechanical hysteresis during unloading, the stress dependence on the strain rate, and the time-dependent stress decrease in the stress-relaxation test.  相似文献   

15.
Previous work using soluble fibrin surrogates or very dilute fibrin indicate that inhibition of plasmin by antiplasmin is attenuated by fibrin surrogates; however, this phenomenon has not been quantified within intact fibrin clots. Therefore, a novel system was designed to measure plasmin inhibition by antiplasmin in real time within an intact clot during fibrinolysis. This was accomplished by including the plasmin substrate S2251 and a recombinant fluorescent derivative of plasminogen (S741C-fluorescein) into clots formed from purified components. Steady state plasmin levels were estimated from the rates of S2251 hydrolysis, the rates of plasminogen activation were estimated by fluorescence decrease over time, and residual antiplasmin was deduced from residual fluorescence. From these measurements, the second order rate constant could be inferred at any time during fibrinolysis. Immediately after clot formation, the rate constant for inhibition decreased 3-fold from 9.6 x 10(6) m(-1) s(-1) measured in a soluble buffer system to 3.2 x 10(6) m(-1) s(-1) in an intact fibrin clot. As the clot continued to lyse, the rate constant for inhibition continued to decrease by 38-fold at maximum. To determine whether this protection was the result of plasmin exposure of carboxyl-terminal lysine residues, clots were formed in the presence of activated thrombin-activatable fibrinolysis inhibitor (TAFIa). In the presence of TAFIa, the initial protective effect associated with clot formation occurred; however, the secondary protective effect associated with lysine residue exposure was delayed in a TAFIa concentration-dependent manner. This latter effect represents another mechanism whereby TAFIa attenuates fibrinolysis.  相似文献   

16.
We tested the hypothesis that in vitro peroxynitrite (ONOO, a product of activated inflammatory cells) may affect fibrinolysis in human blood through the reduction of platelet-related fibrinolysis resistance. It was found that ONOO (25–300 µM) accelerated lysis of platelet-fibrin clots (in PRP) dose-dependently, whereas fibrinolysis of platelet-free clots was slightly inhibited by ≥1000 µM stressor. Concentrations of ONOO affecting the lysis of platelet-rich clots, inhibited clot retraction (CR) in a dose-dependent manner. Thromboelastometry (ROTEM) measurements performed in PRP showed that treatment with ONOO (threshold conc. 100 µM) prolongs clotting time, and reduces alpha angle, and clot formation velocity parameters indicating for reduced thrombin formation rate. In PRP, ONOO (threshold conc. 100 µM) reduced the collagen-evoked exposure of phosphatidylserine (PS) on platelets’ plasma membrane, the shedding of platelet-derived microparticles (PMP), and inhibited platelet-dependent thrombin generation (measured in artificial system), dose-dependently. As judged by confocal microscopy, similar ONOO concentrations altered the architecture of clots formed in collagen-treated PRP. Clots formed in the presence of ONOO were less dense and were composed of thicker fibers, which make them more susceptible to lysis. In platelet-depleted plasma, ONOO (up to milimolar concentration) did not alter clot structure. Blockage of PS exposed on platelets resulted in an alteration of clot architecture toward more prone to lysis. ONOO, at lysis-affecting concentrations, inhibited the collagen-evoked secretion of fibrinolytic inhibitors from platelets. We conclude that physiologically relevant ONOO concentrations may accelerate the lysis of platelet-fibrin clots predominantly via downregulation of platelet-related mechanisms including: platelet secretion, clot retraction, platelet procoagulant response, and the alteration in clot architecture associated with it.  相似文献   

17.

Background

Formation of compact and poorly lysable clots has been reported in thromboembolic disorders. Little is known about clot properties in bleeding disorders.

Objectives

We hypothesized that more permeable and lysis-sensitive fibrin clots can be detected in women with heavy menstrual bleeding (HMB).

Methods

We studied 52 women with HMB of unknown cause and 52 age-matched control women. Plasma clot permeability (Ks), turbidity and efficiency of fibrinolysis, together with coagulation factors, fibrinolysis proteins, and platelet aggregation were measured.

Results

Women with HMB formed looser plasma fibrin clots (+16% [95%CI 7–18%] Ks) that displayed lower maximum absorbancy (-7% [95%CI -9 – -1%] ΔAbsmax), and shorter clot lysis time (-17% [95%CI -23 – -11%] CLT). The HMB patients and controls did not differ with regard to coagulation factors, fibrinogen, von Willebrand antigen, thrombin generation markers and the proportion of subjects with defective platelet aggregation. The patients had lower platelet count (-12% [95%CI -19 – -2%]), tissue plasminogen activator antigen (-39% [95%CI -41 – -29%] tPA:Ag), and plasminogen activator inhibitor-1 antigen (-28% [95%CI -38 – -18%] PAI-1:Ag) compared with the controls. Multiple regression analysis upon adjustment for age, body mass index, glucose, and fibrinogen showed that decreased tPA:Ag and shortened CLT were the independent predictors of HMB.

Conclusions

Increased clot permeability and susceptibility to fibrinolysis are associated with HMB, suggesting that altered plasma fibrin clot properties might contribute to bleeding disorders of unknown origin.  相似文献   

18.
Simulation of calcium sparks in cut skeletal muscle fibers of the frog   总被引:7,自引:0,他引:7  
Spark mass, the volume integral of Delta F/F, was investigated theoretically and with simulations. These studies show that the amount of Ca2+ bound to fluo-3 is proportional to mass times the total concentration of fluo-3 ([fluo-3T]); the proportionality constant depends on resting Ca2+ concentration ([Ca2+]R). In the simulation of a Ca2+ spark in an intact frog fiber with [fluo-3T] = 100 microM, fluo-3 captures approximately one-fourth of the Ca2+ released from the sarcoplasmic reticulum (SR). Since mass in cut fibers is several times that in intact fibers, both with similar values of [fluo-3T] and [Ca2+]R, it seems likely that SR Ca2+ release is larger in cut fiber sparks or that fluo-3 is able to capture a larger fraction of the released Ca2+ in cut fibers, perhaps because of reduced intrinsic Ca2+ buffering. Computer simulations were used to identify these and other factors that may underlie the differences in mass and other properties of sparks in intact and cut fibers. Our spark model, which successfully simulates calcium sparks in intact fibers, was modified to reflect the conditions of cut fiber measurements. The results show that, if the protein Ca2+-buffering power of myoplasm is the same as that in intact fibers, the Ca2+ source flux underlying a spark in cut fibers is 5-10 times that in intact fibers. Smaller source fluxes are required for less buffer. In the extreme case in which Ca2+ binding to troponin is zero, the source flux needs to be 3-5 times that in intact fibers. An increased Ca2+ source flux could arise from an increase in Ca2+ flux through one ryanodine receptor (RYR) or an increase in the number of active RYRs per spark, or both. These results indicate that the gating of RYRs, or their apparent single channel Ca2+ flux, is different in frog cut fibers--and, perhaps, in other disrupted preparations--than in intact fibers.  相似文献   

19.

Objectives

Given reports on the increased prevalence of thromboembolic incidents in patients with eosinophilic granulomatosis with polyangiitis (EGPA; Churg-Strauss syndrome), we investigated whether fibrin clot properties are unfavorably altered in EGPA.

Methods

Ex vivo plasma fibrin clot characteristics, including clot permeability, turbidimetry and efficiency of fibrinolysis using two assays, were investigated in 34 consecutive patients with remission in EGPA according to the Birmingham Vasculitis Activity Score version 3 (23 female, 11 male), aged 48 (range, 21–80) years. The control group comprised 34 age- and sex- matched volunteers.

Results

Compared with controls, patients with EGPA were characterized by denser fiber clots (estimated pore size, Ks, 7.30±0.93 vs 10.14±1.07 10−9 cm2), faster fibrin polymerization (lag phase in a turbidimetric curve, 41.8±3.6 vs 47.4±2.9 s), thicker fibrin fibers (maximum absorbance, ΔAbs, 0.87±0.09 vs 0.72±0.07), higher maximum levels of D-dimer released from clots (DDmax 4.10±0.46 vs 3.54±0.35 mg/L), and prolonged clot lysis time (t50%; 9.50±1.45 vs 7.56±0.87 min); all p<0.0001. Scanning electron microscopy images confirmed denser plasma fibrin networks composed of thinner fibers formed in EGPA. Antineutrophil cytoplasmic antibody status and C-reactive protein did not affect clot variables. Multivariate analysis adjusted for fibrinogen showed that Ks was predicted by eosinophil count, peak thrombin generation, factor VIII, and soluble CD40 ligand, whereas eosinophil count, peak thrombin generation and antiplasmin predicted t50%.

Conclusion

This study is the first to show that EGPA is associated with prothrombotic plasma fibrin clot phenotype, which may contribute to thromboembolic manifestations reported in this disease.  相似文献   

20.
Concanavalin A was employed to study the role of platelet membrane glycoproteins in platelet-fibrin interactions during clot formation. A rheological technique was used to study the interactions, measuring the clot rigidity and platelet contractile force simultaneously during the formation of network structure. Concanavalin A lowered the clot rigidity and contractile force of a platelet-rich plasma clot by a small extent. Plasma glycoproteins probably compete with platelet membranes for concanavalin A binding in platelet-rich plasma. Both native concanavalin A (tetrameric) and succinyl concanavalin A (dimeric) lowered the clot rigidity and contractile force of a washed platelet-fibrin clot dramatically, almost down to those values found for fibrin clots. Inhibition studies with alpha-methyl-D-mannoside indicated that the concanavalin A effects were specific for the concanavalin A binding capacity to platelets. The effects of native concanavalin A on platelet-fibrin clots were only partially reversible, while the succinyl concanavalin A effects were completely reversible. The observed concanavalin A effects are probably mainly due to concanavalin A binding to platelet membrane glycoproteins. The concanavalin A binding site appears to play an important role in the fibrin binding to platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号