首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We summarize the results of several of our recent studies on the dielectric properties of protein solutions, tissues, and nonionic microemulsions at microwave frequencies extending to 18 GHz. The data in all cases are analyzed using the Maxwell mixture theory to determine the dielectric properties of the suspending water and the amount and dielectric properties of the water of hydration associated with the suspended phase. The dielectric data from the protein solutions and tissues are broadly consistent with the results of previous studies at UHF frequencies; they indicate hydration values in the range of 0.4–0.6 g water/g protein. There is evidence of a dielectric relaxation process occurring at low-GHz frequencies that can be attributed in part to dielectric relaxation of the “bound” water in the system. The remaining solvent water appears to have dielectric properties close to, if not precisely the same as, those of pure water. The average relaxation frequency of the suspending water in the microemulsions is reduced from that of pure water, evidently reflecting an average of that of the water of hydration (~5–6 GHz) and that of pure water. This reduced average relaxation frequency implies an increased average viscosity of the water and (by Walden's rule) accounts for the unexpectedly low ionic conductivity of the preparations.  相似文献   

2.
The dielectric behavior of the aqueous solutions of three widely differing macromolecules has been investigated: myoglobin, polyvinylpyrrolidone (PVP), and human serum low-density lipoprotein (LDL). It was not possible to interpret unambiguously the dielectric properties of the PVP solution in terms of water structure. The best interpretation of the dielectric data on the myoglobin and LDL solutions was that, in both cases, the macromolecule attracts a layer of water of hydration one or two water molecules in width. For LDL, this corresponds to a hydration factor of only 0.05 g/g, whereas for myoglobin the figure is nearer 0.6 g/g. With myoglobin, part of the water of hydration exhibits its dispersion at frequencies of a few GHz, and the rest disperses at lower frequencies, perhaps as low as 10-12 MHz. The approximate constancy of the width of the hydration shell for two molecules as dissimilar in size as LDL and myoglobin confirms that the proportion of water existing as water of hydration in a biological solution depends critically on the size of the macromolecules as well as on their concentration.  相似文献   

3.
Bound water is a major component of biological membranes and is required for the structural stability of the lipid bilayer. It has also been postulated that it is involved in water transport, membrane fusion, and mobility of membrane proteins and lipids. We have measured the fluorescence emission of membrane-bound 1-anilino-8-naphthalenesulfonate (ANS) and the infrared spectra of membranes, both as a function of hydration. ANS fluorescence is sensitive to polarity and fluidity of the membrane-aqueous interface, while infrared absorption is sensitive to the hydrogen bonding and vibrational motion of water and membrane proteins and lipids. The fluorescence results provide evidence of increasing rigidity and/or decreasing polarity of the membrane-aqueous interface with removal of water. The membrane infrared spectra show prominent hydration-dependent changes in a number of bands with possible assignments to cholesterol (vinyl CH bend, OH stretch), protein (amide A, II, V), and bound water (OH stretch). Further characterization of the bound water should allow its incorporation into current models of membrane structure and give insight into the role of membrane hydration in cell surface function.  相似文献   

4.
The electrical and dielectric properties of Ba2+ and Ca2+ cross‐linked alginate hydrogel beads were studied by means of single‐particle electrorotation. The use of microstructured electrodes allowed the measurements to be performed over a wide range of medium conductivity from about 5 mS/m to 1 S/m. Within a conductivity range, the beads exhibited measurable electrorotation response at frequencies above 0.2 MHz with two well‐resolved co‐ and antifield peaks. With increasing medium conductivity, both peaks shifted toward higher frequency and their magnitudes decreased greatly. The results were analyzed using various dielectric models that consider the beads as homogeneous spheres with conductive loss and allow the complex rotational behavior of beads to be explained in terms of conductivity and permittivity of the hydrogel. The rotation spectra could be fitted very accurately by assuming (a) a linear relationship between the internal hydrogel conductivity and the medium conductivity, and (b) a broad internal dispersion of the hydrogel centered between 20 and 40 MHz. We attribute this dispersion to the relaxation of water bound to the polysaccharide matrix of the beads. The dielectric characterization of alginate hydrogels is of enormous interest for biotechnology and medicine, where alginate beads are widely used for immobilization of cells and enzymes, for drug delivery, and as microcarriers for cell cultivation. © 1999 John Wiley & Sons, Inc. Biopoly 50: 227–237, 1999  相似文献   

5.
The relative permittivity and conductivity of rabbit eye lens were measured in the frequency domain between 2 and 18 GHz at temperatures of 37 and 20°C. An analysis of the data suggested that a significant proportion of the bulk water in nuclear and cortical lens tissue may behave differently to pure water. In addition, the Maxwell-Fricke mixture theory was used to estimate the amount of hydrated water that relaxes far below 1 GHz.  相似文献   

6.
The effect of conductivity on the dielectric measurements of proteins is studied. For that purpose the dielectric spectra (0.03–13 MHz) of serum albumin and myoglobin in solutions of varying conductivities were recorded. The results presented confirm that Maxwell's prediction of a threshold frequency in conducting materials also holds for protein solutions. The threshold frequency of a serum albumin solution is experimentally determined and the ionic screening of the electric field when performing dielectric spectra of these samples discussed. Three distinct frequency regions must be considered: a low frequency region where the sample behaves like a conductor; an intermediate region centered around the threshold frequency where the free charges partially screen the fixed charges; and a high frequency region where the sample behaves like a good dielectric. Dielectric measurements in the low frequency region defined above, are not possible.  相似文献   

7.
The role of water in biochemical and cellular events is ignored by most workers. However, much recent research has pointed to the importance of physical processes of the cell, which focus attention on such straight forward, elementary questions as position and relationship in space of cell components. In this communication these questions are examined in terms of a new model of water structure. A radically new feature of this model is that water clusters have long-term rather than flickering existence and are as large as the macromolecular components of the cell. These properties allow the clusters and other components to pack together spacially so giving rise to integrated, large-scale, subcellular structures. The intimate participation of water in these structures would explain the fragility of the cytoplasmic organization.  相似文献   

8.
9.
In this paper, the content of bound water was studied to evaluate the cryoprotective properties of ethylene glycol and glycerol solution. Molecular dynamic models for the solution were built, the classification principle and statistical methods of water molecules in solutions were presented, respectively. The content of bound water with various hydroxyl molarity at different temperatures was obtained through molecular dynamic simulation. The results reveal that the content of bound water increases with increasing hydroxyl molarity, but decreases with increasing temperature. It was found that, the content of bound water in ethylene glycol solution is always slightly more than that in glycerol solution, regardless of whether the temperature increases or not.  相似文献   

10.
Free amino acids (FAAs) and protein‐bound amino acids (PBAAs) in seeds play an important role in seed desiccation, longevity, and germination. However, the effect that water stress has on these two functional pools, especially when imposed during the crucial seed setting stage is unclear. To better understand these effects, we exposed Arabidopsis plants at the seed setting stage to a range of water limitation and water deprivation conditions and then evaluated physiological, metabolic, and proteomic parameters, with special focus on FAAs and PBAAs. We found that in response to severe water limitation, seed yield decreased, while seed weight, FAA, and PBAA content per seed increased. Nevertheless, the composition of FAAs and PBAAs remained unaltered. In response to severe water deprivation, however, both seed yield and weight were reduced. In addition, major alterations were observed in both FAA and proteome compositions, which indicated that both osmotic adjustment and proteomic reprogramming occurred in these naturally desiccation‐tolerant organs. However, despite the major proteomic alteration, the PBAA composition did not change, suggesting that the proteomic reprogramming was followed by a proteomic rebalancing. Proteomic rebalancing has not been observed previously in response to stress, but its occurrence under stress strongly suggests its natural function. Together, our data show that the dry seed PBAA composition plays a key role in seed fitness and therefore is rigorously maintained even under severe water stress, while the FAA composition is more plastic and adaptable to changing environments, and that both functional pools are distinctly regulated.  相似文献   

11.
Measurements have been made of the permittivity and conductivity of normal and wounded human skin material over the frequency range 10 MHz-10 GHz. The permittivity of the wounded tissue was found to be about 12% higher than that of the normal tissue. A similar percentage increase was observed for the conductivity. These differences are attributed to the presence of a higher proportion of bulk water in the wounded material.  相似文献   

12.
The effects of low water contents on physiological activities of seeds   总被引:4,自引:0,他引:4  
Physiological activity changes in seeds when water content is changed from 0 to 40%. The limited metabolism of dry seeds allows for studies of the role of water in the biochemical reactions of living systems. At very low water contents, seeds exhibit limited biochemical activity, however light reactions and some oxidative processes are possible. As water content is increased, enzymatic reactions are increasingly facilitated. At moisture contents of about 24% mitochondrial electron transport is detectable. Changes in the physiological activity of seeds occur at discrete moisture levels that are reflective of discrete changes in the thermodynamic properties of water.  相似文献   

13.
14.
Microwave dielectric spectroscopy can measure the rotational mobility of water molecules that hydrate proteins and the hydration-shell volume. Using this technique, we have recently shown that apart from typical hydrating water molecules with lowered mobility there are other water molecules around the actin filaments (F-actin) which have a much higher mobility than that of bulk water [Biophys. J. 85 (2003) 3154]. We report here that the volume of this water component (hyper-mobile water) markedly increases without significant change of the volume of the ordinary hydration shell when the myosin motor-domain (S1, myosin subfragment-1) binds to F-actin. No hyper-mobile component was found in the hydration shell of S1 itself. The present results strongly suggest that the solvent space around S1 bound to F-actin is diffusionally asymmetric, which supports our model of force generation by actomyosin proposed previously [op. cit.].  相似文献   

15.
为研究水分散失和水分补充对新疆新害虫白星花金龟Potosia brevitarsis Lewis的影响,在30℃恒温条件下,采用重量法测定白星花金龟脱水过程以及不同补水方式下(补蒸馏水;补盐水;补糖水)体内水分含量的变化,并与步甲、拟步甲的水分代谢进行比较。结果表明,白星花金龟的脱水与拟步甲科的网目拟地甲Opatrum subaratum Fald相似,在10h内脱水率均约为5%,而斑步甲Anisodactylus signatus 10h内脱水率约为20%。不同补水处理后,白星花金龟体内含水量迅速增加,随后继续脱水;脱水10d后,补蒸馏水、补盐水和补糖水处理的白星花金龟脱水率分别为28%,27%和21%,而未补水白星花金龟的脱水率为34%;未补水处理的甲虫脱水率和补蒸馏水和补盐水处理之间无显著性差异,而和补糖水处理之间存在显著性差异。未补水、补蒸馏水、补盐水和补糖水处理的LT50分别约为9,12,13和17d,补糖水能有效延长甲虫的存活时间。糖能有效地增加白星花金龟体内含水量,对维持其体内水分平衡起重要作用。  相似文献   

16.
Raman spectroscopy is used to probe the nature of the hydrogen bonds which hold the water of hydration to DNA. The ~ 3450?cm?1 molecular O–H stretching mode shows that the first six water molecules per base pair of the primary hydration shell are very strongly bound to the DNA. The observed shift in the peak position of this mode permits a determination of the length of the hydrogen bonds for these water molecules. These hydrogen bonds appear to be about 0.3?Å shorter than the hydrogen bonds in bulk water. The linewidth of this mode shows no significant changes above water contents of about 15 water molecules per base pair. This technique of using a vibrational spectroscopy to obtain structural information about the hydration shells of DNA could be used to study the hydration shells of other biomolecules.  相似文献   

17.
We consider the influence of the molecular structure of phospholipid membranes on their dielectric properties in the radio frequency range. Membranes have a stratified dielectric structure on the submolecular level, with the lipid chains forming a central hydrophobic layer enclosed by the polar headgroups (HGs) and bound water layers. In our numerical model, isotropic permittivities of 2.2 and 48.8 were assigned to the lipid chain and bound water layers, respectively. The HG region was assumed to possess an anisotropic static permittivity with 142.2 and 30.2 in the tangential and normal directions, respectively. The permittivities of the HG and bound water regions have been assumed to disperse at frequencies around 51 and 345 MHz to become 2.2 and 1.8, respectively, in both the normal and tangential directions. Electric field distribution and absorption were calculated for phospholipid vesicles with 75 nm radius as an example. Significant absorption has been obtained in the HG and bound water regions. Averaging the membrane absorption over the layers resulted in a decreased absorption below 1 GHz but a more than 10-fold increase above 1 GHz, compared to a model with a homogeneous membrane of averaged properties. We propose single particle dielectric spectroscopy by AC electrokinetics at low-bulk medium conductivities for an experimental verification of our model.  相似文献   

18.
The molecular mechanisms underlying the adaptations to water loss developed in several tardigrade species remain poorly understood. It seems, however, that the binding of the disaccharide trehalose to membranes and other cellular components at low water contents is important for the tolerance to extreme drought. Trehalose is thus thought to replace interfacial- or “bound” water and enhance the conformational stability of labile macromolecules. To gain further insight into this we investigate here thermodynamic properties of water bound to the protein lysozyme at low water content (<100 water molecules pr. protein). It appears that this surface water has a higher enthalpy and higher entropy than the bulk liquid. These observations call for re-evaluation of the term “bound water” since “bound” carries the connotation of a low-energy, ordered (i.e. low-entropy) state.

To rationalize these observations it is suggested that — in addition to the self-evident energetic contribution from biopolymer-water contacts — the properties of interfacial water are dominated by two effects. These are i) the ability of water to facilitate fast movements of individual parts of biopolymers and ii) the high molecular cohesion in the aqueous bulk. Thus, the hydration of a surface leads to enhanced flexibility in the biopolymer and breakage in the network of hydrogen bonding in the liquid bulk, and these effects collectively increase the enthalpy and entropy of the system. As a result, the thermodynamic parameters of hydration of lysozyme carry the thermodynamic hallmarks of an order → disorder process, even for the first hundred (i.e. most strongly associated) water molecules. We discuss these data for protein hydration together with some recent, very similar observations for the hydration of lipid bilayer membranes.  相似文献   


19.
Dynamics of uncrystallized water and protein was studied in hydrated pellets of the fibrous protein elastin in a wide hydration range (0 to 23 wt.%), by differential scanning calorimetry (DSC), thermally stimulated depolarization current technique (TSDC) and dielectric relaxation spectroscopy (DRS). Additionally, water equilibrium sorption–desorption measurements (ESI) were performed at room temperature. The glass transition of the system was studied by DSC and its complex dependence on hydration water was verified. A critical water fraction of about 18 wt.% was found, associated with a reorganization of water in the material. Three dielectric relaxations, associated to dynamics related to distinct uncrystallized water populations, were recorded by TSDC and DRS. The low temperature secondary relaxation of hydrophilic polar groups on the protein surface triggered by hydration water for almost dry samples contains contributions from water molecules themselves at higher water fractions (ν relaxation). This particular relaxation is attributed to water molecules in the primary and secondary hydration shells of the protein fibers. At higher temperatures and for water fraction values equal to or higher than 10 wt.%, a local relaxation of water molecules condensed within small openings in the interior of the protein fibers was recorded. The evolution of this relaxation (w relaxation) with hydration level results in enhanced cooperativity at high water fraction values, implying the existence of “internal” water confined within the protein structure. At higher temperatures a relaxation associated with water dynamics within clusters between fibers (p relaxation) was also recorded, in the same hydration range.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号