首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rodent family Heteromyidae contains bipedal hoppers and quadrupedal runners. The possibility that bipedalism is associated with forelimb specialization for nonlocomotory functions, such as burrowing and seed-gathering, motivated a static functional-morphometric and interspecific allometric analysis of 18 metric characters of the forelimb skeleton. A principal-components analysis, across 28 species in six genera, showed that lengths of proximal (scapula, humerus) and distal (ulna, radius, metacarpal) elements were negatively allometric, and widths were positively allometric. Quadrupedal and bipedal species groups showed qualitatively similar allometric patterns, except that scapula width anterior to the spine was positively allometric in quadrupeds and negatively allometric in bipeds; scapula width posterior to the spine was positively allometric in bipeds and isometric in quadrupeds; and olecranon length was isometric in bipeds and positively allometric in quadrupeds. Most morphometric characters varied significantly among species within genera, even when effects of size variation were reduced by reconstructing all species to a common general size (as indicated by their score on the first principal component). These shape differences caused species to vary in the mechanical advantage of the forelimb, of possible importance for digging and seed-harvesting performance. Relative to quadrupeds, bipedal species tended to have greater mechanical advantage for proximal forelimb elements and smaller mechanical advantage for distal forelimb elements, but only the distal pattern remained in reconstructed forms, and no functional character was significantly different when tested over variation among genera nested within locomotion type. Cluster analysis confirmed that forelimb characters related to digging or seed-harvest are not coincident with mode of locomotion. Forelimb characters were, however, associated with digging or seed-harvest performance. Mechanical advantage of the proximal forelimb was positively related to an index of the compaction of soils with which 26 desert-dwelling species are associated, and also to relative use of heavy vs. light soils by nine species in the laboratory. Across 10 species, deviations in seed-harvest rate from expected allometric values were negatively correlated with mechanical advantage of the distal forelimb.  相似文献   

2.
Giraffes have remarkably long and slender limb bones, but it is unknown how they grow with regard to body mass, sex, and neck length. In this study, we measured the length, mediolateral (ML) diameter, craniocaudal (CC) diameter and circumference of the humerus, radius, metacarpus, femur, tibia, and metatarsus in 10 fetuses, 21 females, and 23 males of known body masses. Allometric exponents were determined and compared. We found the average bone length increased from 340 ± 50 mm at birth to 700 ± 120 mm at maturity, while average diameters increased from 30 ± 3 to 70 ± 11 mm. Fetal bones increased with positive allometry in length (relative to body mass) and in diameter (relative to body mass and length). In postnatal giraffes bone lengths and diameters increased iso‐ or negatively allometric relative to increases in body mass, except for the humerus CC diameter which increased with positive allometry. Humerus circumference also increased with positive allometry, that of the radius and tibia isometrically and the femur and metapodials with negative allometry. Relative to increases in bone length, both the humerus and femur widened with positive allometry. In the distal limb bones, ML diameters increased isometrically (radius, metacarpus) or positively allometric (tibia, metatarsus) while the corresponding CC widths increased with negative allometry and isometrically, respectively. Except for the humerus and femur, exponents were not significantly different between corresponding front and hind limb segments. We concluded that the patterns of bone growth in males and females are identical. In fetuses, the growth of the appendicular skeleton is faster than it is after birth which is a pattern opposite to that reported for the neck. Allometric exponents seemed unremarkable compared to the few species described previously, and pointed to the importance of neck elongation rather than leg elongation during evolution. Nevertheless, the front limb bones and especially the humerus may show adaptation to behaviors such as drinking posture. J. Morphol. 276:503–516, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
Different types of locomotion in phylogenetically close rodent species can lead to significantly different growth patterns of certain skeletal structures. In the present study, we compared the allometric and phenotypic trajectories of the humerus in semiaquatic (Arvicola sapidus) and fossorial (Arvicola scherman) water vole taxa, using three-dimensional geometric morphometrics, to investigate the relationships between functional and ontogenetic differences. Results revealed shared humerus traits between A. sapidus and A. scherman, specifically an expansion of the epicondylar and deltopectoral crests along postnatal ontogeny. In both species, the humerus of young specimens is more robust than in adults, possibly as a compensatory response for lower bone stiffness. However, significant interspecific differences were detected in all components of allometric and phenotypic trajectories. Noticeably divergent allometric trajectories were observed, probably as a result of different functional pressures exerted on this bone. Important differences in the form of the adult humerus between taxa were also found, particularly in features located in muscle insertion zones. Furthermore, the allometric regression revealed certain shape variation not associated with size in A. scherman, suggesting mechanical stress produced by the persistent digging activity during adulthood. A. scherman is a chisel-tooth digger that shares several traits in the humerus morphology with scratch-digger rodent species. Nevertheless, these shared characteristics are less pronounced in fossorial water voles, which is congruent with the different implications of the forelimb in the digging activity in these two types of diggers.  相似文献   

4.
Most studies of sexual dimorphism in mammals focus on overall body size. However, relatively little is known about the differences in growth trajectories that produce dimorphism in organ and muscle size. We weighed six organs and four muscles in Rattus norvegicus to determine what heterochronic and allometric scaling differences exist between the sexes. This cross-sectional growth study included 113 males and 109 females with ages ranging from birth to 200 days of age. All muscle and organ weights were ultimately greater in males than in females, because males grew for a longer period of time, had a greater maximum rate of growth, and spent more time near the maximum rate. No ontogenetic scaling differences existed between the sexes in organ weight except for lungs and gonads. During growth, organ weights were negatively allometric to body weight. No scaling differences relative to body weight existed between the sexes for muscles; however, there was variation in the allometric relations among muscles relative to body weight. Sexual dimorphism in muscles and organs appears to be a size difference resulting from differences in the duration and rates of growth.  相似文献   

5.
The pattern of variation and covariation of proximal and distal limb segment lengths was examined within and between 20 geographically diverse skeletal samples of modern humans. Analyses of variance-covariance matrices (VCMs) of logarithmically transformed (ln) variates of humerus, radius, femur, and tibia length were performed to test the following hypotheses: first, within populations, the distal and proximal segments will have equal relative (i.e., size-independent) variability. However, between populations, the tibia is predicted to be more variable than the other segments. Tests of fit of computed VCMs to theoretical matrices by an iterative procedure (Anderson [1973] Ann. Stat. 1:135-141) reject the equal variance hypotheses, rather suggesting that the relative variances of the distal limb segments are greater than are those of the proximal. Males and females differ somewhat in that within females, the distal segments of both limbs have equal variance, while within males, the tibia has greater relative variance than the radius. The second hypothesis, regarding between-group variability, is somewhat supported in that between human populations, one cannot reject that the tibia has greater relative variance than the other limb segments. However, neither can one reject an alternative hypothesis that both distal limb segments (tibia and radius) are more variable than the proximal segments. Differential growth allometry is explored, and likely plays a major role in differences seen both within and between human populations.  相似文献   

6.
Disagreement is current over the question of whether relatively large teeth in some large primates are a natural outcome of growth trends instead of an indication of intrinsic differences. A cross-primate survey of dental scaling relative to skull (and inferred body) size is given in this study, using a principal component technique to measure the multivariate growth relation between two sets of data: dental size and cranial size. Cheek teeth are strongly positively allometric in restriced taxonomic groups, especially in cercopithecoids. Conversely, the allometry drops to an almost linear proportional growth relation when variation in diet is controlled.  相似文献   

7.
Allometry describes the effect of size change on aspects of an organism's form and can be used to summarize the developmental history of growing parts of an animal. By comparing how allometric growth differs between species, it is possible to reveal differences in their pathways of development. The ability to compare and categorize developmental change between species is demonstrated here using morphometric methods. This involves the interspecific statistical comparison of a large number of bivariate relationships that summarize ontogenetic trajectories. These linear ontogenetic trajectories can be modified as they evolve in any of three ways: ontogenetic scaling indicative of change in the duration of growth, lateral shifts indicative of changes in prenatal development, and directional change indicative of novel modes of postnatal growth. I apply this analysis to skulls of the common hippopotamus ( Hippopotamus amphibius ) and the pygmy hippopotamus ( Hexaprotodon liberiensis ). The number of allometric changes falling into each category was statistically determined and Jolicoeur's multivariate generalization of simple allometry was used to provide an overview of cranial variation. For these skulls, directional change was not found to be statistically significant, but ontogenetic scaling and lateral shifts were both common. This indicates that conserved patterns of growth covariance (ontogenetic scaling) can be separated from novel or derived patterns (directional change and/or lateral shifts). This study demonstrates that He. liberiensis is not simply an ontogenetically scaled version of its larger relative. The evolutionary implications of allometric growth variation are discussed in the light of these findings and those of other studies.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 625–638.  相似文献   

8.
In this study, allometric trajectories for 51 rodent species, comprising equal representatives from each of the major clades (Ctenohystrica, Muroidea, Sciuridae), are compared in a multivariate morphospace (=allometric space) to quantify magnitudes of disparity in cranial growth. Variability in allometric trajectory patterns was compared to measures of adult disparity in each clade, and dietary habit among the examined species, which together encapsulated an ecomorphological breadth. Results indicate that the evolution of allometric trajectories in rodents is characterized by different features in sciurids compared with muroids and Ctenohystrica. Sciuridae was found to have a reduced magnitude of inter‐trajectory change and growth patterns with less variation in allometric coefficient values among members. In contrast, a greater magnitude of difference between trajectories and an increased variation in allometric coefficient values was evident for both Ctenohystrica and muroids. Ctenohystrica and muroids achieved considerably higher adult disparities than sciurids, suggesting that conservatism in allometric trajectory modification may constrain morphological diversity in rodents. The results provide support for a role of ecology (dietary habit) in the evolution of allometric trajectories in rodents.  相似文献   

9.
We compared allometry and variation in the baculum (os penis), mandible, and humerus of the harp seal, Pagophilus groenlandicus. This species is presumed to have a promiscuous mating system in which choice of mate by females during intromission with different males is likely. The baculum is large and grows throughout life so may be an honest indicator of males' quality (size) or viability (age). We predicted that bacular size would exhibit stronger allometry relative to body size than mandibles or humeri. The baculum is less functionally (mechanically) constrained than mandibles or humeri so we also predicted it would be more variable, though less variable than sexually selected traits which do not function as honest indicators. Our sample (N=67 seals) represented broad ranges of size and age (0–35 yr) so we compared variation using residuals from allometric regressions of skeletal measurements on body length. Bacular size was isometric to body length until ∼ 137 cm (when some seals enter puberty) in body length then was highly positively allometric; mandibular and humeral size were negatively allometric to body length throughout growth. Bacula were more variable than mandibles or humeri. Bacular size in large specimens (>137 cm in body length) was related strongly to body length and weakly to age. We interpret bacular size to be an uncheatable honest indicator of male quality and viability. High bacular variation conforms with theoretical predictions of females' asymmetrical choice of mate and choice of extremes, and may reflect corresponding anatomical variation among females. Some bacular variation may also result incidentally from positive allometry coupled with lifelong bacular growth, which can amplify early differences between reproductive and somatic growth, enabled by weak selection on bacular form in relation to function.  相似文献   

10.
The levels of integration, patterns of allometric growth and size-related differences in skull dimensions of the caecilian Dermophis mexicanus were investigated by means of univariate, bivariate and multivariate statistics. The analyses indicate that (1) most but not all measurements of the skull arc more variable in adults than in juveniles; (2) growth is allometric and results in changes in shape between juveniles and adults; (3) there is a high level of integration of all variables by general size; and (4) homologous paired measurements show concordant allometric trends and are integrated beyond the sole effect of general size. These analyses provide baseline data, a set of hypotheses and a methodological framework for comparative studies of patterns of variation and integration among caecilians and among other vertebrates.  相似文献   

11.
The primate distal humerus has been used both in phylogenetic reconstruction and in assessing locomotor and postural adaptations. This study uses an allometric approach to predict locomotor patterns of extant primates regardless of phylogenetic position. By showing the relationship between form and function in living primate taxa it will be possible to use this data set to predict locomotor behavior of extinct primates. Several linear measurements were taken from the distal humerus of 71 extant primate species (anthropoids and prosimians). Allometric regressions of each measurement were performed with mandibular M2 area as a surrogate for body size. These measurements were used to determine if significant differences in distal humerus morphology exist among locomotor groups. The results were then used to test several hypotheses about the relationship between humeral form and function. For example, the hypothesis that suspensory primates have a large medial epicondyle is confirmed; the hypothesis that terrestrial quadrupeds have a deep olecranon fossa could not be confirmed with quantitative data. In addition to this hypothesis testing, the residuals from the allometric regressions of the humeral measurements were used in a discriminant functions analysis to estimate locomotor behavior from distal humerus morphology. The discriminant functions analysis correctly reclassified 64/71 (90%) species.  相似文献   

12.
Traditional classifications of the Old World monkey tribe Papionini (Primates: Cercopithecinae) recognized the mangabey genera Cercocebus and Lophocebus as sister taxa. However, molecular studies have consistently found the mangabeys to be diphyletic, with Cercocebus and Mandrillus forming a clade to the exclusion of all other papionins. Recent studies have identified cranial and postcranial features which distinguish the Cercocebus-Mandrillus clade, however the detailed similarities in cranial shape between the mangabey genera are more difficult to reconcile with the molecular evidence. Given the large size differential between members of the papionin molecular clades, it has frequently been suggested that allometric effects account for homoplasy in papionin cranial form. A combination of geometric morphometric, bivariate, and multivariate methods was used to evaluate the hypothesis that allometric scaling contributes to craniofacial similarities between like-sized papionin taxa. Patterns of allometric and size-independent cranial shape variation were subsequently described and related to known papionin phylogenetic relationships and patterns of development.Results confirm that allometric scaling of craniofacial shape characterized by positive facial allometry and negative neurocranial allometry is present across adult papionins. Pairwise comparisons of regression lines among genera revealed considerable homogeneity of scaling within the Papionini, however statistically significant differences in regression lines also were noted. In particular, Cercocebus and Lophocebus exhibit a shared slope and significant vertical displacement of their allometric lines relative to other papionins. These findings give no support to narrowly construed hypotheses of uniquely shared patterns of allometric scaling, either between sister taxa or across all papionins. However, more general allometric trends do appear to account for a substantial proportion of papionin cranial shape variation, most notably in those features which have influenced traditional morphological phylogenies. Examination of size-uncorrelated shape variation gives no clear support to molecular phylogenies, but underscores the absence of morphometric similarities between the mangabey genera when size effects are controlled. Patterns of allometric and size-uncorrelated shape variation indicate conservatism of cranial form in non- Theropithecus papionins, and suggest that Papio represents the primitive morphometric pattern for the African papionins. Lophocebus exhibits a divergent morphometric pattern, clearly distinguishable from other papionins, most notably Cercocebus. These results clarify patterns of cranial shape variation among the extant Papionini and lay the groundwork for studies of related fossil taxa.  相似文献   

13.
The ontogeny of cranial sexual dimorphism in the Bornean orang-utan (Pongo pygmaeus pygmaeus) is examined by means of principal-components analysis (PCA). Normalized first components are called allometry vectors or vectors of relative growth and show that sexual dimorphism is present at all stages of growth. Two patterns of sexual dimorphism are present: (1) sexual differences at age groups 2 and 3 are the result primarily of differences in principal component II scores, reflecting mainly shape-related differences, and (2) age groups 5, 6, and 7 show a trend of stronger size-related shape differences with increasing age in the allometry vector along with decreasing differences in principal component II scores, reflecting an increase in size-related shape differences between the sexes. Age group 4 shows a combination of both patterns. Our results support Shea's hypothesis (1985a) that when using multigroup PCAs in closely related taxa, the allometry vector will generally estimate the shape variation resulting from the extension of common growth allometry patterns (ontogenetic scaling). The second and subsequent components summarize shape variation from slope and intercept differences between the groups, provided that ontogenetic scaling is not solely responsible for all the shape differences present. Subanalyses of those dimensions previously found to show ontogenetic scaling and acceleration follow this pattern well. The total sample provides a pattern whereby ontogenetically scaled dimensions possess a stronger influence over accelerated dimensions but still generally follow Shea's hypothesis. Finally, variously derived coefficients provided several interesting findings: (1) strong evidence was found against multivariate isometry for both the pooled and the separate samples, (2) multivariate allometric coefficients for both sexes follow the general growth pattern of negative scaling in neurocranial dimensions and positive scaling in the viscerocranium, and (3) multivariate slopes have a very high correlation with bivariate slopes relative to the same independent X variable, thereby lending further support to Jolicoeur's (1963a, b) allometry generalization.  相似文献   

14.
15.
To date, all statements about evolutionary morphological transformation in Crocodylia have essentially been based on qualitative observations. In the present study, we assessed the morphological variation and covariation (integration) between the scapula, coracoid, humerus, radius, and ulna of 15 species of Crocodylidae, Alligatoridae, and Gavialis + Tomistoma using three‐dimensional geometric morphometrics. The results obtained reveal that the variation of elements within species (intraspecific) is large. However, despite this variability, variation across species (interspecific) is mainly concentrated in two dimensions where the disparity is constrained: ‘robusticity’ and ‘twist’ (forelimbs) and ‘robusticity’ and ‘flexion’ (pectoral girdle). Robusticity (first dimension of variation) embodies a set of correlated geometrical features such as the broadening of the girdle heads and blades, or the enlargement of proximal and distal bone ends. The twist is related to the proximal and/or distal epiphyses in the forelimb elements, and flexion of the scapula and coracoid blades comprises the second dimension of variation. In all crocodylians, forelimb integration is characterized by the strong correlations of a humerus–ulna–radius triad and by a radius–ulna pair, thus forming a tight forelimb module. Unexpectedly, we found that the humerus and coracoid form the most integrated pair, whereas the scapula is a more variable and relatively independent element. The integration pattern of the humerus–coracoid pair distinguishes a relatively robust configuration in alligatorids from that of the remainder groups. The patterns of variation and integration shared by all the analyzed species have been interpreted as an inherited factor, suggesting that developmental and functional requirements would have interacted in the acquisition of a semi‐aquatic and versatile locomotion at the Crocodylia node at least 65 Mya. Our findings highlight the need to incorporate the humerus–coracoid pair in biodynamic and biomechanical studies. © 2012 The Linnean Society of London  相似文献   

16.
We examined patterns of variation in the mineral content of the wing skeleton of the Mexican free-tailed bat, Tadarida brasiliensis. We ashed humeri, radii, metacarpals II-V, and phalanges of digit III, and quantified mineralization differences among elements at specific ages, and ontogenetically for each element. The most mineralized elements are the humerus and the radius, followed by the metacarpals, of which the third and fifth are the most mineralized. The proximal and middle phalanges of the third digit exhibit the lowest mineral content, and the distal phalanges have no mineral content according to our ashing protocol. Histological examination shows a thin (< 10 μm) shell of unmineralized osteoid surrounding a cartilaginous core in distal phalanges. Mineral content of each bone increases linearly with age during post-natal development, but there are differences in the rate and extent of this increase among the different elements.
The mineralizaton differences we observed parallel substantially different bone loading patterns found in different parts of the wing in other studies. The humerus and radius are subjected to large torsional loads during flight, while the metacarpals and phalanges experience dorsoventral bending. The high mineral content of the humerus and radius and the low mineral content of the metacarpals and phalanges may resist torsion proximally and promote bending distally. Furthermore, the decrease in mineral content along the wing's proximodistal axis decreases bone mass disproportionately at the wing tips, where the energetic cost of accelerating and decelerating limb mass is greatest.  相似文献   

17.
The relationship between ontogenetic, static, and evolutionary levels of allometry is investigated. Extrapolation from relative size relationships in adults to relative growth in ontogeny depends on the variability of slopes and intercepts of ontogenetic vectors relative to variability in length of the vector. If variability in slopes and intercepts is low relative to variability in length, ontogenetic and static allometries will be similar. The similarity of ontogenetic and static allometries was tested by comparing the first principal component, or size vector, for correlations among 48 cranial traits in a cross-sectional ontogenetic sample of rhesus macaques from Cayo Santiago with a static sample from which all age- and sex-related variation had been removed. The vector correlation between the components is high but significantly less than one while two of three allometric patterns apparent in the ontogenetic component are not discernable in the static component. This indicates that there are important differences in size and shape relationships among adults and within ontogenies. Extrapolation from intra- or interspecific phenotypic allometry to evolutionary allometry is shown to depend on the similarity of genetic and phenotypic allometry patterns. Similarity of patterns was tested by comparing the first principal components of the phenotypic, genetic, and environmental correlation matrices calculated using standard quantitative genetic methods. The patterns of phenotypic, genetic, and environmental allometry are dissimilar; only the environmental allometries show ontogenetic allometric patterns. This indicates that phenotypic allometry may not be an accurate guide to patterns of evolutionary change in size and shape.  相似文献   

18.
Cross-sectional allometric growth patterns of the cranial and postcranial skeleton were compared between giant transgenic (MT-rGH) mice and their normal littermate controls. Body weights, external body dimensions, and a series of cranial and postcranial linear dimensions of the skeleton were determined for samples of known age. Comparative bivariate and multivariate allometric analyses were completed in order to determine whether (1) the larger transgenic mice differed significantly from the normal controls in aspects of body and skeletal proportions, and (2) any such proportion differences resulted from general allometric effects of overall weight or skeletal size increase. Results demonstrate that the transgenic mice do exhibit significantly different body and skeletal proportions than normal control adults. Allometric comparisons of the skeletal dimensions relative to body weight reveal similar coefficients of growth allometry but several differences in gamma-intercept values in the transgenic vs. control groups. The comparisons among the skeletal dimensions of the skull and postcranium generally reveal the sharing and differential extension of common growth allometries in the two groups. Thus, the elevated levels of growth hormone (GH) and insulin-like growth factor I (IGF-I) in the transgenic mice appear to result in increased overall growth for the various skeletal elements, but in the relative proportions determined by intrinsic growth controls within that system.  相似文献   

19.
Artificial selection on body size in Manduca sexta produced genetic strains with large and small body sizes. The wing-body allometries of these strains differed significantly from the wild type. Selection on small body size led to a change in the scaling of wing and body size without changing the allometry: the wings were smaller relative to the body, but to the same degree at all body sizes. Selection for large body size led to a change in allometry with a decrease in the allometric coefficient, wing size becoming progressively smaller relative to body as body size increased. When larvae were deprived of food so as to produce adults of a range of small body sizes, all strains retained the same allometric coefficient but showed an increase in the scaling factor. Thus individuals starved as larvae had a smaller adult body size but had proportionally larger wings than fed individuals. We analyzed the developmental processes that could give rise to this pattern of allometries. Differences in the relative growth of body and wing disks can account for the differences in the allometric coefficients among the three body size strains. The change in wing-body allometry at large body sizes was primarily due to an insufficient time period for growth. The available time period for growth of the wing imaginal disks poses a significant constraint on the proportional growth of wings, and thus on the evolution of large body size.  相似文献   

20.
Forty wind-pollinated families from eight provenances, four from xeric and four from mesic site types in the Sierra Nevada of California, were examined in the greenhouse for differential response to soil moisture stress. Analysis was made of shoot-root allometric growth coefficients, absolute and relative growth rates and the relationship among these response measures and growth in three field plantations. The results showed significant differences among families for allometric growth (k) coefficients under moderate stress, but no differences among provenances or between site types. Absolute and relative growth rate differences between site types were not significant under any treatment; however provenance differences were observed. Correlation coefficients between plantation performance and greenhouse growth estimates were sometimes significant but significance was plantation and treatment specific. Research performed while author was on sabbatical leave at the Institute of Forest Genetics, USDA-USFS, Placerville, California.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号