首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
The atomic motions from a molecular-dynamics simulation of yeast tRNAPhe are analyzed and compared with those observed in protein simulations. In general, the tRNA motions are of larger amplitude, they are more anisotropic, and they arise from potentials of mean force that are more anharmonic than in the protein case. In both cases, the amplitudes are largest for atoms on the surface of the molecules. On the other hand, the most anisotropic and anharmonic atomic motions are generally found in the interior of the tRNA, while they are found on the surface of the protein. These differences are discussed in terms of the differences in structure between nucleic acids and proteins.  相似文献   

2.
T Ichiye  M Karplus 《Biochemistry》1988,27(9):3487-3497
The effects of anisotropy and anharmonicity of the atomic fluctuations on the results of crystallographic refinement of proteins are examined. Atomic distribution functions from a molecular dynamics simulation for lysozyme are introduced into a real-space (electron density) refinement procedure for individual atoms. Several models for the atomic probability distributions are examined. When isotropic, harmonic motion is assumed, the largest discrepancies between the true first moments (means) and second moments (B factors) of the positions calculated from the dynamics and the fitted values occur for probability densities with multiple peaks. The refined mean is at the center of the largest peak, and the refined B factor is slightly larger than that of the largest peak, unless the distance between the peaks is small compared to the peak width. The resulting values are often significantly different from the true first and second moments of the distribution. To improve the results, alternate conformations, rather than anharmonic corrections, should be included.  相似文献   

3.
T Ichiye  M Karplus 《Proteins》1987,2(3):236-259
Positional probability density functions (pdf) for the atomic fluctuations are determined from a molecular dynamics simulation for hen egg-white lysozyme. Most atoms are found to have motions that are highly anisotropic but only slightly anharmonic. The largest deviations from harmonic motion are in the direction of the largest rms fluctuations in the local principal axis frame. Backbone atoms tend to be more nearly harmonic than sidechain atoms. The atoms with the largest anharmonicities tend to have pdfs with multiple peaks, each of which is close to harmonic. Several model pdfs are evaluated on the basis of how well they fit probability densities from the dynamics simulations when parameterized in terms of the moments of the distribution. Gram-Charlier and Edgeworth perturbation expansions, which have been successful in describing the motions of small molecules in crystals, are shown to be inadequate for the distributions found in the dynamics of proteins. Multipeaked distribution functions are found to be more appropriate.  相似文献   

4.
Protein conformational dynamics, despite its significant anharmonicity, has been widely explored by normal mode analysis (NMA) based on atomic or coarse-grained potential functions. To account for the anharmonic aspects of protein dynamics, this study proposes, and has performed, an anharmonic NMA (ANMA) based on the Cα-only elastic network models, which assume elastic interactions between pairs of residues whose Cα atoms or heavy atoms are within a cutoff distance. The key step of ANMA is to sample an anharmonic potential function along the directions of eigenvectors of the lowest normal modes to determine the mean-squared fluctuations along these directions. ANMA was evaluated based on the modeling of anisotropic displacement parameters (ADPs) from a list of 83 high-resolution protein crystal structures. Significant improvement was found in the modeling of ADPs by ANMA compared with standard NMA. Further improvement in the modeling of ADPs is attained if the interactions between a protein and its crystalline environment are taken into account. In addition, this study has determined the optimal cutoff distances for ADP modeling based on elastic network models, and these agree well with the peaks of the statistical distributions of distances between Cα atoms or heavy atoms derived from a large set of protein crystal structures.  相似文献   

5.
We use principal component analysis (PCA) to detect functionally interesting collective motions in molecular-dynamics simulations of membrane-bound gramicidin A. We examine the statistical and structural properties of all PCA eigenvectors and eigenvalues for the backbone and side-chain atoms. All eigenvalue spectra show two distinct power-law scaling regimes, quantitatively separating large from small covariance motions. Time trajectories of the largest PCs converge to Gaussian distributions at long timescales, but groups of small-covariance PCs, which are usually ignored as noise, have subdiffusive distributions. These non-Gaussian distributions imply anharmonic motions on the free-energy surface. We characterize the anharmonic components of motion by analyzing the mean-square displacement for all PCs. The subdiffusive components reveal picosecond-scale oscillations in the mean-square displacement at frequencies consistent with infrared measurements. In this regime, the slowest backbone mode exhibits tilting of the peptide planes, which allows carbonyl oxygen atoms to provide surrogate solvation for water and cation transport in the channel lumen. Higher-frequency modes are also apparent, and we describe their vibrational spectra. Our findings expand the utility of PCA for quantifying the essential features of motion on the anharmonic free-energy surface made accessible by atomistic molecular-dynamics simulations.  相似文献   

6.
A comparison is made between a 200-ps molecular dynamics simulation in vacuum and a normal mode analysis on the protein bovine pancreatic trypsin inhibitor (BPTI) in order to elucidate the dual aspects of harmonicity and anharmonicity in the dynamics of proteins. The molecular dynamics trajectory is analyzed using principal component analysis, an effective harmonic analysis suited for comparison with the results from the normal mode analysis. The results suggest that the first principal component shows qualitatively different behavior from higher principal components and is associated with apparent barrier crossing events on an anharmonic conformational energy surface. The higher principal components appear to have probability distributions that are well approximated by Gaussians, indicating harmonicity. Eliminating the contribution from the first principal component reveals a great deal of correspondence between the 2 methods. This correspondence, however, involves a factor of 2, as the variances of the distribution of the higher principal components are, on average, roughly twice those found from the normal mode analysis. A model is proposed to reconcile these results with those from previous analyses.  相似文献   

7.
A comparison of a normal mode analysis and principal component analysis of a 200-ps molecular dynamics trajectory of bovine pancreatic trypsin inhibitor in vacuum has been made in order to further elucidate the harmonic and anharmonic aspects in the dynamics of proteins. An anharmonicity factor is defined which measures the degree of anharmonicity in the modes, be they principal modes or normal modes, and it is shown that the principal mode system naturally divides into anharmonic modes with peak frequencies below 80 cm?1, and harmonic modes with frequencies above this value. In general the larger the mean-square fluctuation of a principal mode, the greater the degree of anharmonicity in its motion. The anharmonic modes represent only 12% of the total number of variables, but account for 98% of the total mean-square fluctuation. The transitional nature of the anharmonic motion is demonstrated. The results strongly suggest that in a large subspace, the free energy surface, as probed by the simulation, is approximated by a multi-dimensional parabola which is just a resealed version of the parabola corresponding to the harmonic approximation to the conformational energy surface at a single minimum. After 200 ps, the resealing factor, termed the “normal mode resealing factor,” has apparently converged to a value whereby the mean-square fluctuation within the subspace is about twice that predicted by the normal mode analysis. © 1995 Wiley-Liss, Inc.  相似文献   

8.
Molecular dynamics is used to probe the atomic motions of the carboxy-myoglobin protein as a function of temperature. Simulations of 150 picoseconds in length are carried out on the protein at 20, 60, 100, 180, 220, 240, 260, 280, 300, 320 and 340 K. The simulations attempt to mimic neutron scattering experiments very closely by including a partial hydration shell around the protein. Theoretical elastic, quasielastic and inelastic neutron scattering data are derived from the trajectories and directly compared with experiment. Compared to experiment, the simulation-derived elastic scattering curves show a decrease in intensity as a function of the scattering wavevector, q2. The inelastic and quasielastic spectra show that the inelastic peak is shifted to lower frequency than the experimental value, while quasielastic behavior is in good agreement with experiment. This suggests that the theoretical model is too flexible in the harmonic limit (low temperature), but accurately reproduces high-temperature behavior. Time correlation functions of the intermediate scattering function are determined. At low temperature there is one fast decay process, and at high temperatures there is an additional slow relaxation process that is due to quasielastic scattering. The average atomic fluctuations show that the protein behaves harmonically at low temperatures. At approximately 210 K, a glass-like transition in atomic fluctuations is seen. Above the transition temperature, the atomic fluctuations exhibit both harmonic and anharmonic behavior. Comparison of protein mobility behavior with experiment indicate the fluctuations derived from simulations are larger in the harmonic region. However, the anharmonic region agrees very well with experiment. The anharmonicity is large at all temperatures, with a gradual monotonic increase from 0.5 at 20 K to greater than 0.7 at 340 K without a noticeable change at the glass transition temperature. Heavy-atom dihedral transitions are monitored as a function of temperature. Trends in the type of dihedral transitions that occur with temperature are clearly visible. Dihedral transitions involving backbone atoms occur only above the glass transition temperature. The overall protein behavior results suggest that at low temperatures there is purely vibrational motion with one fast decay process, and above the glass transition temperature there is more anharmonic motion with a fast and a slower relaxation process occurring simultaneously.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
M Prabhakaran  S C Harvey 《Biopolymers》1987,26(7):1087-1096
A 30-ps molecular dynamics simulation of motions of cyclodextrin is completed on the free molecule and with two model substrates. Even with its cyclic constraint, the molecule traversed through large conformational space, showing high flexibility. The asymmetric oscillations of the free molecule are evident from the time course behavior of the ratio of the second moments (anisotropic ratio) of the atomic motions along the first two principal axes. The study also shows the stability of the molecule derived from specific substrate. The preference of chair conformation by glucose is also evident from these studies.  相似文献   

10.
We have studied the local dynamics of calf thymus double-helical DNA by means of an "optical labeling" technique. The study has been performed by measuring the visible absorption band of the cationic dye ethidium bromide, both free in solution and bound to DNA, in the temperature interval 360-30 K and in two different solvent conditions. The temperature dependence of the absorption line shape has been analyzed within the framework of the vibronic coupling theory, to extract information on the dynamic properties of the system; comparison of the thermal behavior of the absorption band of free and DNA-bound ethidium bromide gave information on the local dynamics of the double helix in the proximity of the chromophore. For the dye free in solution, large spectral heterogeneity and coupling to a "bath" of low-frequency (soft) modes is observed; moreover, anharmonic motions become evident at suitably high temperatures. The average frequency of the soft modes and the amplitude of anharmonic motions depend upon solvent composition. For the DNA-bound dye, at low temperatures, heterogeneity is decreased, the average frequency of the soft modes is increased, and anharmonic motions are hindered. However, a new dynamic regime characterized by a large increase in anharmonic motions is observed at temperatures higher than approximately 280 K. The DNA double helix therefore appears to provide, at low temperatures, a rather rigid environment for the bound chromophore, in which conformational heterogeneity is reduced and low-frequency motions (both harmonic vibrations and anharmonic contributions) are hindered. The system becomes anharmonic at approximately 180 K; however, above approximately 280 K, anharmonicity starts to increase much more rapidly than for the dye free in solution; this can be attributed to the onset of wobbling of the dye in its intercalation site, which is likely connected with the onset of (functionally relevant) DNA motions, involving local opening/unwinding of the double helix. As shown by parallel measurements of the melting curves, these motions precede the melting of the double helix and depend upon solvent composition much more than does the melting itself.  相似文献   

11.
The dynamic behavior of an endoglucanase from the hyperthermophilic microorganism Pyrococcus furiosus was investigated using elastic neutron scattering. The temperature dependence of the atomic motions was correlated with conformational and functional characteristics of the enzyme. The onset of biological function at temperatures higher than approximately 25 degrees C (the hyperthermostable enzyme is essentially inactive at room temperature) was associated with a dynamical transition in the anharmonic motions domain. This transition from the nonactive to the enzymatically active conformation involved structurally similar conformational substates in the energy landscape. From the mean-square displacement of the protein atoms, the molecular flexibility and the effective force constants were calculated at different temperature zones. The results showed that the activity increases at higher temperatures where the intramolecular bonds are weakened and the overall rigidity of the protein is decreased. Further temperature increase resulted in significantly increased atomic fluctuations featuring heat denaturation of the protein.  相似文献   

12.
Molecular dynamics simulations are employed to determine the errors introduced by anharmonicity and anisotropy in the structure and temperature factors obtained for proteins by refinement of X-ray diffraction data. Simulations (25 ps and 300 ps) of metmyoglobin are used to generate time-averaged diffraction data at 1.5 A resolution. The crystallographic restrained-parameter least-squares refinement program PROLSQ is used to refine models against these simulated data. The resulting atomic positions and isotropic temperature factors are compared with the average structure and fluctuations calculated directly from the simulations. It is found that significant errors in the atomic positions and fluctuations are introduced by the refinement, and that the errors increase with the magnitude of the atomic fluctuations. Of particular interest is the fact that the refinement generally underestimates the atomic motions. Moreover, while the actual fluctuations go up to a mean-square value of about 5 A2, the X-ray results never go above approximately 2 A2. This systematic deviation in the motional parameters appears to be due to the use of a single-site isotropic model for the atomic fluctuations. Many atoms have multiple peaks in their probability distribution functions. For some atoms, the multiple peaks are seen in difference electron density maps and it is possible to include these in the refinement as disordered residues. However, for most atoms the refinement fits only one peak and neglects the rest, leading to the observed errors in position and temperature factor. The use of strict stereochemical restraints is inconsistent with the average dynamical structure; nevertheless, refinement with tight restraints results in structures that are comparable to those obtained with loose restraints and better than those obtained with no restraints. The results support the use of tight stereochemical restraints, but indicate that restraints on the variation of temperature factors are too restrictive.  相似文献   

13.
Debye and Waller showed how to adjust scattering intensities in diffraction experiments for harmonic motions of atoms about an average, static reference configuration. However, many motions, particularly in biological molecules as compared to simple crystals, are far from harmonic. We show how, using a variety of simple anharmonic, multiconformational models, it is possible to construct a variety of Generalized Debye-Waller Factors, and understand their meaning. A central result for these cases is that, in principle, intensity factors cannot be obtained from true total mean square displacements of the atoms. We make the distinction between the intensity factors for unimodal quasiharmonic motions and those for the anharmonic, multimodal (valley hopping) motions. Only the former affect the conventional B factors. Proteins 29:153–160, 1997. Published 1997 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    14.
    《Biophysical journal》2021,120(23):5343-5354
    Low-frequency normal modes generated by elastic network models tend to correlate strongly with large conformational changes of proteins, despite their reliance on the harmonic approximation, which is only valid in close proximity of the native structure. We consider 12 variants of the torsional network model (TNM), an elastic network model in torsion angle space, that adopt different sets of torsion angles as degrees of freedom and reproduce with similar quality the thermal fluctuations of proteins but present drastic differences in their agreement with conformational changes. We show that these differences are related to the extent of the deviations from the harmonic approximation, assessed through an anharmonic energy function whose harmonic approximation coincides with the TNM. Our results indicate that mode anharmonicity is more strongly related to its collectivity, i.e., the number of atoms displaced by the mode, than to its amplitude; low-frequency modes can remain harmonic even at large amplitudes, provided they are sufficiently collective. Finally, we assess the potential benefits of different strategies to minimize the impact of anharmonicity. The reduction of the number of degrees of freedom or their regularization by a torsional harmonic potential significantly improves the collectivity and harmonicity of normal modes and the agreement with conformational changes. In contrast, the correction of normal mode frequencies to partially account for anharmonicity does not yield substantial benefits. The TNM program is freely available at https://github.com/ugobas/tnm.  相似文献   

    15.
    T Horiuchi  N Go 《Proteins》1991,10(2):106-116
    A method is presented to describe the internal motions of proteins obtained from molecular dynamics or Monte Carlo simulations as motions of normal mode variables. This method calculates normal mode variables by projecting trajectories of these simulations onto the axes of normal modes and expresses the trajectories as a linear combination of normal mode variables. This method is applied to the result of the molecular dynamics and the Monte Carlo simulations of human lysozyme. The motion of the lowest frequency mode extracted from the simulations represents the hinge bending motion very faithfully. Analysis of the obtained motions of the normal mode variables provides an explanation of the anharmonic aspects of protein dynamics as due first to the anharmonicity of the actual potential energy surface near a minimum and second to trans-minimum conformational changes.  相似文献   

    16.
    Anharmonicity in time-dependent conformational fluctuations is noted to be a key feature of functional dynamics of biomolecules. Although anharmonic events are rare, long-timescale (μs–ms and beyond) simulations facilitate probing of such events. We have previously developed quasi-anharmonic analysis to resolve higher-order spatial correlations and characterize anharmonicity in biomolecular simulations. In this article, we have extended this toolbox to resolve higher-order temporal correlations and built a scalable Python package called anharmonic conformational analysis (ANCA). ANCA has modules to: 1) measure anharmonicity in the form of higher-order statistics and its variation as a function of time, 2) output a storyboard representation of the simulations to identify key anharmonic conformational events, and 3) identify putative anharmonic conformational substates and visualization of transitions between these substates.  相似文献   

    17.
    Glycerol has been shown to lower the heat denaturation temperature (T(m)) of dehydrated lysozyme while elevating the T(m) of hydrated lysozyme (. J. Pharm. Sci. 84:707-712). Here, we report an in situ elastic neutron scattering study of the effect of glycerol and hydration on the internal dynamics of lysozyme powder. Anharmonic motions associated with structural relaxation processes were not detected for dehydrated lysozyme in the temperature range of 40 to 450K. Dehydrated lysozyme was found to have the highest T(m) by. Upon the addition of glycerol or water, anharmonicity was recovered above a dynamic transition temperature (T(d)), which may contribute to the reduction of T(m) values for dehydrated lysozyme in the presence of glycerol. The greatest degree of anharmonicity, as well as the lowest T(d), was observed for lysozyme solvated with water. Hydrated lysozyme was also found to have the lowest T(m) by. In the regime above T(d), larger amounts of glycerol lead to a higher rate of change in anharmonic motions as a function of temperature, rendering the material more heat labile. Below T(d), where harmonic motions dominate, the addition of glycerol resulted in a lower amplitude of motions, correlating with a stabilizing effect of glycerol on the protein.  相似文献   

    18.
    Effects of explicit consideration of charges displaced from atomic sites due to atomic orbital hybridization called hybridization-displaced charges (HDC) on dipole moments and surface molecular electrostatic potentials of certain radicals and their complexes with closed-shell molecules have been studied. HDC were computed for several radicals and their complexes at the B3LYP/6–31G** level of theory. At this level, HDC consist of three point charges associated with hydrogen atoms and seven point charges associated with heavy atoms belonging to the second row of the periodic table. HDC are so calculated that the contribution of each atom to the component of molecular dipole moment arising due to atomic orbital hybridization is preserved. It is found that dipole moments and electrostatic potentials of the systems studied here can be obtained with a significantly improved accuracy using a combination of Mulliken charges and HDC over that obtained by Mulliken charges only. Figure Surface MEP map of H2O-HO· radical complex obtained using Mulliken charges combined with HDC  相似文献   

    19.
    Empirical or knowledge‐based potentials have many applications in structural biology such as the prediction of protein structure, protein–protein, and protein–ligand interactions and in the evaluation of stability for mutant proteins, the assessment of errors in experimentally solved structures, and the design of new proteins. Here, we describe a simple procedure to derive and use pairwise distance‐dependent potentials that rely on the definition of effective atomic interactions, which attempt to capture interactions that are more likely to be physically relevant. Based on a difficult benchmark test composed of proteins with different secondary structure composition and representing many different folds, we show that the use of effective atomic interactions significantly improves the performance of potentials at discriminating between native and near‐native conformations. We also found that, in agreement with previous reports, the potentials derived from the observed effective atomic interactions in native protein structures contain a larger amount of mutual information. A detailed analysis of the effective energy functions shows that atom connectivity effects, which mostly arise when deriving the potential by the incorporation of those indirect atomic interactions occurring beyond the first atomic shell, are clearly filtered out. The shape of the energy functions for direct atomic interactions representing hydrogen bonding and disulfide and salt bridges formation is almost unaffected when effective interactions are taken into account. On the contrary, the shape of the energy functions for indirect atom interactions (i.e., those describing the interaction between two atoms bound to a direct interacting pair) is clearly different when effective interactions are considered. Effective energy functions for indirect interacting atom pairs are not influenced by the shape or the energy minimum observed for the corresponding direct interacting atom pair. Our results suggest that the dependency between the signals in different energy functions is a key aspect that need to be addressed when empirical energy functions are derived and used, and also highlight the importance of additivity assumptions in the use of potential energy functions.  相似文献   

    20.
    The solution structure of interleukin-1 beta determined by nuclear magnetic resonance spectroscopy is compared to three independently solved X-ray structures at 2 A resolution. It is shown that the solution and X-ray structures are very similar, both locally and globally. The atomic root-mean-square (r.m.s.) difference between the solution and X-ray structures is approximately 0.9 A for backbone atoms, approximately 1.5 A for all atoms and approximately 1 A for all atoms of internal residues. The largest differences are confined to some of the loops and turns connecting beta-strands. The atomic r.m.s. distribution of the 32 calculated solution structures about their mean co-ordinate positions (approximately 0.4 A for backbone atoms, approximately 0.8 A for all atoms and approximately 0.5 A for all atoms of internal residues) is approximately the same as the atomic r.m.s. differences between the three X-ray structures, indicating that the positional errors in the atomic co-ordinates determined by the two methods are similar.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号