首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Abstract: Exposure of human SK-N-MC neurotumor cells to 4β-phorbol 12-myristate 13-acetate (PMA) increased isoproterenol stimulation of cyclic AMP levels by severalfold. This potentiation was blocked by inhibitors of protein kinase C (PKC) and did not occur in cells in which PKC had been down-regulated. PMA treatment also enhanced the stimulation by dopamine, cholera toxin, and forskolin. Thus, the effect of PMA on the adenylylcyclase system was postreceptor and involved either the guanine nucleotide binding regulatory (G) proteins or the cyclase itself. As PMA treatment did not impair the inhibition of isoproterenol stimulation by neuropeptide Y, an involvement of the inhibitory G protein Gi was unlikely. Cholate extracts of membranes from control and PMA-treated cells were equally effective in the reconstitution of adenylylcyclase activity in S49 cyc? membranes, which lack the stimulatory G protein subunit G; thus, Gs did not appear to be the target of PMA action. Membranes from PMA-treated cells exhibited increased adenylylcyclase activity to all stimulators including Mn2+ and Mn2+ plus forskolin. In addition, activity was increased when control membranes were incubated with ATP and purified PKC from rat brain. This is consistent with a direct effect of PKC on the adenylylcyclase catalyst in SK-N-MC cells. PMA treatment also resulted in a shift to less sensitivity in the Kact for isoproterenol but not for dopamine or CGP-12177 (a β3-adrenergic agonist) stimulation. Thus, the β1 but not the D1 or β3 receptors were being desensitized by PKC activation. Analysis of SK-N-MC cells by western blotting with antibodies against different PKC isozymes revealed that both the α and ζ isozymes were present in these cells. Whereas PKC-α was activated and translocated from cytosol to membrane by phorbol esters, the ζ isozyme was not. Thus, PKC-α, which has been implicated in desensitization in other cell lines, also appears to potentiate adenylylcyclase activity.  相似文献   

2.
The present study was undertaken to determine whether endometrial cancer cell line HEC-1-A differ from nontransformed cells, in that the cAMP and protein kinase C pathways may enhance IGF-I effects in mitogenesis by acting at the G1 phase of the cell cycle instead of G0. Immunofluorescence staining of HEC-1-A cells using the proliferating cell nuclear antigen (PCNA) monoclonal antibody and flow cytometric analysis determined that HEC-1-A cells do not enter the G0 phase of the cell cycle when incubated in a serum-free medium. Approximately 51% of the cells were in G1, 12% were in S and 37% in G2 phase of the cell cycle prior to treatment. Forskolin and phorbol-12-myristate 13-acetate (PMA) were used to stimulate cAMP production and protein kinase C activity, respectively. IGF-I, forskolin and PMA each increased (P <0.01) [3H]-thymidine incorporation in a dose and time dependent manner. The interaction of forskolin and PMA with IGF-I was then determined. Cells preincubated with forskolin or PMA followed by incubation with IFG-I incorporated significantly more (P <0.01) [3H]-thymidine into DNA than controls or any treatment alone. It is concluded that forskolin and, to a lesser extent, PMA exert their effect at the G1 phase of the cycle to enhance IGF-I effects in cell proliferation.  相似文献   

3.
It has been proposed that the functions of the cyclin-dependent kinase inhibitors p21Cip1/Waf1 and p27Kip1 are limited to cell cycle control at the G1/S-phase transition and in the maintenance of cellular quiescence. To test the validity of this hypothesis, p21 was expressed in a diverse panel of cell lines, thus isolating the effects of p21 activity from the pleiotropic effects of upstream signaling pathways that normally induce p21 expression. The data show that at physiological levels of accumulation, p21, in addition to its role in negatively regulating the G1/S transition, contributes to regulation of the G2/M transition. Both G1- and G2-arrested cells were observed in all cell types, with different preponderances. Preponderant G1 arrest in response to p21 expression correlated with the presence of functional pRb. G2 arrest was more prominent in pRb-negative cells. The arrest distribution did not correlate with the p53 status, and proliferating-cell nuclear antigen (PCNA) binding activity of p21 did not appear to be involved, since p27, which lacks a PCNA binding domain, produced similar arrest Bs. In addition, DNA endoreduplication occurred in pRb-negative but not in pRb-positive cells, suggesting that functional pRb is necessary to prevent DNA replication in p21 G2-arrested cells. These results suggest that the primary target of the Cip/Kip family of inhibitors leading to efficient G1 arrest as well as to blockade of DNA replication from either G1 or G2 phase is the pRb regulatory system. Finally, the tendency of Rb-negative cells to undergo endoreduplication cycles when p21 is expressed may have negative implications in the therapy of Rb-negative cancers with genotoxic agents that activate the p53/p21 pathway.  相似文献   

4.
5.
Suspension cultures of Chinese hamster cells (line CHO), which had stopped dividing and were arrested in G1 following growth to high cell concentrations in F-10 medium, could be induced to reinitiate DNA synthesis and to divide in synchrony upon addition of the appropriate amounts of isoleucine and glutamine. Both amino acids were required to initiate resumption of cell-cycle traverse. Deficiencies in other amino acids contained in F-10 medium did not result in accumulation of cells in G1, indicating a specific action produced by limiting quantities of isoleucine and glutamine. In the presence of sufficient glutamine, approximately 2 x 10-6 M isoleucine was required for all cells to initiate DNA synthesis in a population initially containing 1.5 x 105 cells/ml. Under similar conditions, about 4 x 10-6 M isoleucine was required for all G1-arrested cells to progress through cell division. In contrast, 1 x 10-4 M glutamine was necessary for maximum initiation of DNA synthesis in G1 cells, along with sufficient isoleucine. A technique for rapid production of G1-arrested cells is described in which cells from an exponentially growing population placed in F-10 medium deficient in both isoleucine and glutamine or isoleucine alone accumulated in G1 after 30 hr.  相似文献   

6.
Summary Cell division is induced in stationary cultures of BALB/c-3T3 mouse embryo cells without renewal of medium by addition of the tumor promoter, phorbol myristate acetate (PMA), or bovine serum. The addition of dbcAMP (10−3 m) or other inhibitors of cAMP phosphodiesterase, papaverine (6.7×10−6 m), Persantin (5×10−5 m) or RO-20-1724 (10−4 m), prevents cell replication induced by PMA or serum. In contrast, ouabain (10−4 m) and N,N′-dicyclohexylcarbodiimide (10−5 m), inhibitors of Na+−K+-ATPase activity, block the PMA-stimulated effect but do not inhibit serum-stimulated cell division. Several stages in the cell cycle are sensitive to dbcAMP addition. One is early in the G1 phase at the time of reinitiation of the cell cycle from a stationary (G0) phase, a second is associated with the G1-S transition, and a third with passage of cells from a post-S phase to mitosis. Based on observations of early morphological changes, responses of plasma membrane ezymes and effects of enzyme inhibitors, the stimulation of cell division in BALB/c-3T3 cells by PMA or serum appears to involve several membrane functions which may act in a cooperative manner. This work was supported by a USPHS Research Grant CA12503, and a Center Grant ES-00260 awarded to the Institute of Environmental Medicine. Mrs. Susan Kulina provided the consistent and excellent technical aid necessary to perform this work. Note added in proof: During the preparation and review of this paper, Boynton reported that PMA appears to sensitize BALB/c-3T3 cells to calcium ion which may play a critical role in the regulation of the DNA synthesis (36).  相似文献   

7.
The phosphorylation of non-histone chromatin proteins in synchronized HeLa S3 cells was studied in 5 phases of the cell cycle: mitosis, G1, early and late S, and G2. The rate of non-histone chromatin protein phosphorylation was found to be maximal during G1 and G2, somewhat decreased during S phase, and almost 90% depressed during mitosis. Analysis of the phosphorylated non-histone chromatin proteins by SDS-acrylamide gel electrophoresis showed a heterogeneous pattern of phosphorylation as measured by labeling with 32P. Significant variations in the labeling pattern were seen during different stages of the cell cycle, and particular unique species appeared to be phosphorylated selectively during certain stages of the cycle.  相似文献   

8.
Histones of exponential and G1-arrested mouse L-cells were double-labeled with either [3H]lysine and [32P]phosphate or with [14C]arginine and [3H]acetate in order to investigate cell cycle-dependent changes in rates of synthesis and metabolic modifications as well as the effect of the method of nuclear isolation on retention of the labeled fractions. Results indicate that newly synthesized lysine-rich histones incorporate 32P at the highest rate. However, phosphorylation can also be detected in G1-arrested cells and in the case of F2b, F10, and F11, with no detectable new synthesis.On the other hand, acetylation proceeded at similar rates in both exponential and stationary cells with the exception of F2a 2 and F3 which showed higher acetylation levels in the latter.In relation to the method used for nuclear isolation, we observed that, even in cases where no difference in the relative amount of a given histone could be detected, the species recovered were not identical. We conclude that none of the methods commonly employed retains all of the histones. In general, the acetylated species appear to be best preserved at a higher divalent cation concentration while the newly synthesized ones are better conserved at lower ionic strengths.  相似文献   

9.
The frequency of incorporation of the cytokinin N6-[p-3H]benzyladenine into major RNA species of tobacco (Nicotiana tabacum cv W 38) cells steadily increased as a function of its concentration in the culture medium, up to a 10 micromolar cytostatic overdose. During a 55-hour incubation of cells with 0.4 micromolar benzyladenine (BA), which is the optimal concentration for cell division, the incorporation frequency increased to one BA per 1.5 to 2.0 × 104 conventional bases in total RNA. Frequencies of BA incorporation into 18S and 25S rRNA and into RNA precursors were very similar, 2- to 3-fold higher than the frequency of BA incorporation into the 4S + 5S RNA fraction. In cells incubated with 10 micromolar BA, the rate of RNA synthesis between 24 and 55 hours was lower than at optimal growth conditions; 18S and 25S rRNA synthesis was depressed more than the synthesis of 4S + 5S RNA. At 55 hours, BA was incorporated into total RNA at the steady state frequency of one per 1,300 conventional bases. All major RNA species were BA-labeled to approximately the same level, except that the labeling of the RNA precursors was 2-fold higher than the labeling of mature RNA species. These results may reflect an alteration in the processing of the RNA precursors at supra-optimal cytokinin concentration.  相似文献   

10.
Summary BALB/c 3T3 cells cultured as aggregates were examined by two independent techniques to determine whether or not cells accumulated at a specific point in the cell cycle, and if so to determine the point at which they accumulate. Replating cells onto dishes followed by pulse labeling with [3H]thymidine and autoradiography indicated that aggregate-cultured cells were in the same phase of the cell cycle as cells cultured as confluent monolayers. Flow microfluorometry confirmed that 75% of the aggregate-maintained cells were arrested in G0 or G1, with 25% distributed throughout the rest of the cell cycle. Labeling and mitotic indices of cells in aggregates were also consistent with about 20 to 25% of the cells being in S+G2=M phases of the cell cycle at any time. This work was supported by PHS Grant CA20323 and NSF Grant PCM 74-15092 to H. G., who is also a Harry H. Pinney Cancer Scholar.  相似文献   

11.
In order to study Gq-tubulin interaction in the cytosol, GH3 and AtT-20 cells (stably expressing TRH receptor) were transiently transfected with G cDNA. Forty-eight hours after transfection, thyrotropin-releasing hormone (TRH)-stimulated prolactin (PRL) secretion by G-transfected GH3 cells increased by 90% compared to mock-transfected cells. In addition, using immunocytochemistry it was observed that G-specific staining was much more prominent in G-transfected GH3 and AtT-20 cells (also transfected with G) compared to mock-transfected cells. Thus, transfection resulted in successful overexpression of functional G. Forty-eight hours after transfection, cells were processed to obtain soluble and polymerized tubulin fractions. Tubulin levels were determined in these fractions by immunoblotting using polyclonal anti-tubulin antibodies. Compared to mock-transfected cells soluble tubulin levels decreased in G-transfected GH1 and AtT-20 cells, by 33 and 52%, respectively. Moreover, compared to mock-transfected cells a 50% reduction in the ratio (an index of the flux between tubulin pools) of soluble and polymerized tubulin levels was observed in G-transfected GH3 and AtT-20 cells. To determine whether these effects on tubulin were mediated by Gq directly, we examined the influence of purified Gq on tubulin polymerization. Gq (0.5 μM) inhibited polymerization of crude tubulin (present in GH3 cell cytosol) by 53%. In contrast to its effects on GH3 cell cytosol tubulin, Gq stimulated purified tubulin polymerization by 160%. These results suggest that Gq modulates the polymerization and depolymerization cycles of tubulin and that this modulation is in turn influenced by other unknown cellular components. © 1996 Wiley-Liss, Inc.  相似文献   

12.
WEHI-3B D cells differentiate in response to 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) but not to all-trans-retinoic acid (RA) or other inducing agents. Combinations of RA with 1,25-(OH)2D3 interact to produce synergistic differentiation of WEHI-3B D cells. To determine factors involved in the synergistic interaction, expression of the 1,25-(OH)2D3 receptor (VDR) and retinoid receptors, RARα and RXRα, was measured. No VDR was detected in untreated WEHI-3B D cells; however, RA and 1,25-(OH)2D3 when used as single agents caused a slight induction of the VDR and in combination produced a marked increase in the VDR. In contrast, no changes in RARα and RXRα were initiated by these compounds. An RAR-selective agonist combined with 1,25-(OH)2D3 produced synergistic differentiation of WEHI-3B D cells, whereas an RXR-selective agonist did not. To gain information on the role of the VDR in the synergistic interaction, the VDR gene was transferred into WEHI-3B D+ cells, in which no VDR was detected and no synergism was produced. Expression of the VDR conferred differentiation responsiveness to 1,25-(OH)2D3 in WEHI-3B D+ cells. These findings suggest that (a) induction of VDR expression is a key component in the synergistic differentiation induced by 1,25-(OH)2D3 and RA and (b) RAR and not RXR must be activated for enhanced induction of the VDR and for the synergistic differentiation produced by RA and 1,25-(OH)2D3.  相似文献   

13.
Goyal A  Tolbert NE 《Plant physiology》1989,89(4):1264-1269
Neither Dunaliella cells grown with 5% CO2 nor their isolated chloroplasts had a CO2 concentrating mechanism. These cells primarily utilized CO2 from the medium because the K(0.5) (HCO3) increase from 57 micromolar at pH 7.0 to 1489 micromolar at pH 8.5, where as the K(0.5) CO2 was about 12 micromolar over the pH range. After air adaptation for 24 hours in light, a CO2 concentrating mechanism was present that decreased the K0.5 (CO2) to about 0.5 micromolar and K0.5 (HCO3) to 11 micromolar at pH 8. These K0.5 values suggest that air-adapted cells preferentially concentrated CO2 but could also use HCO3 from the medium. Chloroplasts isolated from air-adapted cells had a K(0.5) for total inorganic carbon of less than 10 micromolar compared to 130 micromolar for chloroplasts from cells grown on high CO2. Chloroplasts from air-adapted cells, but not CO2-grown cells, concentrate inorganic carbon internally to 1 millimolar in 60 seconds from 240 micromolar in the medium. Maximum uptake rates occurred after preillumination of 45 seconds to 3 minutes. The CO2 concentrating mechanism by chloroplasts from air-adapted cells was light dependent and inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) or flurocarbonyl-cyamidephenylhydrazone (FCCP). Phenazine-methosulfate at 10 micromolar to provide cyclic phosphorylation partially reversed the inhibition by DCMU but not by FCCP. One to 0.1 millimolar vanadate, an inhibitor of plasma membrane ATPase, inhibited inorganic carbon accumulation by isolated chloroplasts. Vanadate had no effect on CO2 concentration by whole cells, as it did not readily cross the cell plasmalemma. Addition of external ATP to the isolated chloroplast only slightly stimulated inorganic carbon uptake and did not reverse vanadate inhibition by more than 25%. These results are consistent with a CO2 concentrating mechanism in Dunaliella cells which consists in part of an inorganic carbon transporter at the chloroplast envelope that is energized by ATP from photosynthetic electron transport.  相似文献   

14.
Phosphorylation of histone fractions in the presence and absence of DNA synthesis was measured using the new “isoleucine-limiting” method for synchronizing Chinese hamster cells in early G1-phase. Using preparative electrophoresis, histone f1 phosphorylation was found to be dependent upon cell-cycle position, being absent in G1-arrested and G1-traversing cells and active in the S-phase. The absence of f1 phosphorylation in G1-arrested cells, which are known to exhibit f1 turnover, indicates that f1 phosphorylation is not an obligatory part of the f1 turnover process. In contrast to histone f1, it was found that histone f2a2 phosphorylation is independent of cell-cycle position, occurring with equal magnitude in the G1-traversing state when DNA synthesis is essentially absent and in the S-phase when DNA synthesis is active. When cells were arrested in the G1-state by isoleucine deprivation, f2a2 phosphorylation continued to be active, occurring at 56% of the rate observed in the G1-traversing state. These results indicate that phosphorylation of histone f2a2 is independent of f2a2 synthesis, independent of DNA synthesis, and independent of histone f1 phosphorylation. Because f2a2 is actively phosphorylated in G1-arrested cells known to be active in the synthesis of various types of RNA (including messenger) as well as in G1-traversing and S-phase cells, we feel that phosphorylation of histone f2a2 should continue to be considered in models concerning activation of DNA template activity.  相似文献   

15.
The kinetics of acidic residual chromosomal protein synthesis and transport were studied throughout the cell cycle in HeLa S-3 cells synchronized by 2 mM thymidine block and selective detachment of mitotic cells. Pulse labeling the cells with leucine-3H for 2 min and then "chasing" the radioactive proteins for up to 3 hr showed that the amount of protein synthesized, transported, and retained in the acidic residual chromosomal protein fraction is greater immediately after mitosis and later in G1 than in the S or G2 phases of the cell cycle. During S, only 20–25% of the proteins synthesized and transported to the acidic residual chromosomal protein fraction are chased during the first 2 hr after pulse labeling, whereas up to 40% of the material entering the residual nuclear fraction in mitosis, G1, and G2 leaves during a 2 hr chase. Polyacrylamide gel electrophoretic profiles of these proteins, at various times after pulse labeling, reveal that the turnover of individual polypeptides within this fraction has kinetics of synthesis and turnover which are markedly different from one another and undergo stage-specific changes.  相似文献   

16.
In one group of C4 species, including Chloris gayana, C4 acids are decarboxylated via phosphoenolpyruvate carboxykinase to give phosphoenolpyruvate as the initial C3 product. This paper presents an analysis of the kinetics of labeling of various photosynthetic intermediates in Chloris gayana leaves exposed to 14CO2, and the pool sizes of these intermediates, primarily to provide information about the subsequent metabolism of phosphoenolpyruvate. Saturation labeling of the C-4 of aspartate and malate, and the C-1 of 3-phosphoglycerate, indicated photosynthetically active pools of 0.45, 0.22, and 0.95 μol/mg chlorophyll, respectively. For aspartate and 3-phosphoglycerate, the total leaf pools and the photosynthetic pools were of similar size, but the total pool of malate was about 100 times larger than the photosynthetically active pool. From the relative rates of labeling of phosphoenolpyruvate, pyruvate, alanine, and C-1, C-2 plus C-3 of aspartate, during steady-state 14CO2 assimilation, relative pool sizes were calculated to be about 10:11:78:100, respectively. Pulse/chase labeling of leaves provided estimates of relative photosynthetic pool sizes in the ratio of about 6:15:90:100, respectively, where aspartate is arbitrarily assigned a value of 100 in both cases. Notably, labeling of alanine was consistent with its derivation from the C-1, C-2 plus C-3 carbons of aspartate, and the alanine pool was at least eight times larger than the phosphoenolpyruvate pool that showed similar labeling kinetics. Results were consistent with the view that at least most of the phosphoenolpyruvate produced by C4 acid decarboxylation is metabolized via alanine.  相似文献   

17.
In cultures of murine neoplastic mast cells, the duration of different phases of the division cycle (G1, S, G2, and mitosis [M]) was determined under optimal and several well-defined suboptimal growth conditions. Two methods of evaluation were applied to the same culture system: first, the relative number of G1, S, G2, and M cells was determined by pulse labeling of samples with thymidine-3H and subsequent radioautography in conjunction with a microfluorometric technique permitting rapid measurements of cellular DNA content; second, after pulse labeling with thymidine-3H, the variations with time of the mitotic labeling index were analyzed. Suboptimal culture conditions were obtained by reducing the concentration of single essential medium components (leucine, glucose, or serum) or by the addition of specific metabolic inhibitors (actinomycin D, amethopterin). Growth-limiting culture conditions resulted in increased generation times. Even under control conditions, the cell number doubling time exceeded the generation time, and this difference was more pronounced in suboptimal media. Under most of the suboptimal conditions tested, the increase in generation time was attributable primarily to an extended duration of the G1 phase. Under certain growth-limiting conditions, however, other phases were also prolonged. In addition, the variabilities of the generation time and of certain cell cycle phases were increased under suboptimal culture conditions. Results obtained by the two methods of evaluation were, in general, in good agreement with each other. Some differences were, however, observed and interpreted in terms of cell death and/or asymmetric frequency distributions of cell cycle parameters.  相似文献   

18.
Preparative polyacrylamide gel electrophoresis was used to examine histone phosphorylation in synchronized Chinese hamster cells (line CHO). Results showed that histone f1 phosphorylation, absent in G1-arrested and early G1-traversing cells, commences 2 h before entry of traversing cells into the S phase. It is concluded that f1 phosphorylation is one of the earliest biochemical events associated with conversion of nonproliferating cells to proliferating cells occurring on old f1 before synthesis of new f1 during the S phase. Results also showed that f3 and a subfraction of f1 were rapidly phosphorylated only during the time when cells were crossing the G2/M boundary and traversing prophase. Since these phosphorylation events do not occur in G1, S, or G2 and are reduced greatly in metaphase, it is concluded that these two specific phosphorylation events are involved with condensation of interphase chromatin into mitotic chromosomes. This conclusion is supported by loss of prelabeled 32PO4 from those specific histone fractions during transition of metaphase cells into interphase G1 cells. A model of the relationship of histone phosphorylation to the cell cycle is presented which suggests involvement of f1 phosphorylation in chromatin structural changes associated with a continuous interphase "chromosome cycle" which culminates at mitosis with an f3 and f1 phosphorylation-mediated chromosome condensation.  相似文献   

19.
Fetal calf serum (FCS) and PMA (phorbol 12-myristate-13-acetate) specifically stimulate the synthesis of heparan sulfate proteoglycan in endothelial cells. Staurosporine and n-butanol, kinase inhibitors, abolish the PMA effect. Forskolin and 8-bromo adenosine 3′:5′-cyclic monophosphate, activators of, respectively, adenylate cyclase and protein kinase A cannot reproduce the PMA effect. The kinetics of cell entry into S phase of the endothelial cells was determined by DNA synthesis ([3H]-thymidine and Br-dU incorporation), and flow cytometry. The mitogenic effect of fetal calf serum is abolished by PMA. Also, PMA pre-treatment inhibits the enhanced synthesis of heparan sulfate proteoglycan after a second PMA exposure. Remarkably, the stimulation of heparan sulfate proteoglycan synthesis by fetal calf serum and PMA seems to be mainly restricted to G1 phase. Therefore fetal calf serum and PMA cause an enhanced synthesis of heparan sulfate proteoglycan, and PMA causes a cell cycle block at G1 phase. J. Cell. Biochem. 70:563–572, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
Abstract: The identities of heterotrimeric G proteins that can interact with the μ-opioid receptor were investigated by α-azidoanilido[32P]GTP labeling of α subunits in the presence of opioid agonists in Chinese hamster ovary (CHO)-MORIVA3 cells, a CHO clone that stably expressed μ-opioid receptor cDNA (MOR-1). This clone expressed 1.01 × 106μ-opioid receptors per cell and had higher binding affinity and potency to inhibit adenylyl cyclase for the μ-opioid-selective ligands [d -Ala2,N-MePhe4,Gly-ol]-enkephalin and [N-MePhe3,d -Pro4]-morphiceptin, relative to the δ-selective opioid agonist [d -Pen2,d -Pen5]-enkephalin or the κ-selective opioid agonist U-50,488H. μ-Opioid ligands induced an increase in α-azidoanilido[32P]GTP photoaffinity labeling of four Gα subunits in this clone, three of which were identified as Gi3α, Gi2α, and Go2α. The same pattern of simultaneous interaction of the μ-opioid receptor with multiple Gα subunits was also observed in two other clones, one expressing about three times more and the other 10-fold fewer receptors as those expressed in CHO-MORIVA3 cells. The opioid-induced increase of labeling of these G proteins was agonist specific, concentration dependent, and blocked by naloxone and by pretreatment of these cells with pertussis toxin. A greater agonist-induced increase of α-azidoanilido[32P]GTP incorporation into Gi2α (160–280%) and Go2α (110–220%) than for an unknown Gα (G?α) (60%) or Gi3α (40%) was produced by three different μ-opioid ligands tested. In addition, slight differences were also found between the ability of various μ-opioid agonists to produce half-maximal labeling (ED50) of any given Gα subunit, with a rank order of Gi3α > Go2α > Gi2α = G?α. In any case, these results suggest that the activated μ-opioid receptor couples to four distinct G protein α subunits simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号