首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conformational preferences of the modified nucleosides N2-methylguanosine (m2G) and N2, N2-dimethylguanosine (m22G) have been studied theoretically by using quantum chemical perturbative configuration interaction with localized orbitals (PCILO) method. Automated complete geometry optimization using semiempirical quantum chemical RM1, along with ab initio molecular orbital Hartree–Fock (HF-SCF), and density functional theory (DFT) calculations has also been made to compare the salient features. Single-point energy calculation studies have been made on various models of m2G26:C/A/U44 and m22G26:C/A/U44. The glycosyl torsion angle prefers “syn” (χ = 286°) conformation for m2G and m22G molecules. These conformations are stabilized by N(3)–HC2′ and N(3)–HC3′ by replacing weak interaction between O5′–HC(8). The N2-methyl substituent of (m2G26) prefers “proximal” or s-trans conformation. It may also prefer “distal” or s-cis conformation that allows base pairing with A/U44 instead of C at the hinge region. Thus, N2-methyl group of m2G may have energetically two stable s-trans m2G:C/A/U or s-cis m2G:A/U rotamers. This could be because of free rotations around C–N bond. Similarly, N2, N2-dimethyl substituent of (m22G) prefers “distal” conformation that may allow base pairing with A/U instead of C at 44th position. Such orientations of m2G and m22G could play an important role in base-stacking interactions at the hinge region of tRNA during protein biosynthesis process.  相似文献   

2.
Abstract

2′-Deoxy-2′-methylidenecytidine (DMDC), a potent inhibitor of the growth of tumor cells, was crystallized with two different forms. One is dihydrated (DMDC·2H2O) and the other is its hydrochloride salt (DMDC·HCLl). Both crystal and molecular structures have been determined by the X-ray diffraction method. In both forms the glycosidic and sugar conformations are anti and C(4′)-exo, respectively, whereas the conformation about the exocyclic bond is trans for DMDC·2H2O and gauche + for DMDC·HCl. Proton nuclear magnetic resonance data of DMDC indicate a preference for the anti C(4′)-exo conformation found in the solid state. These molecular conformations were compared with the related pyrimidine nucleosides. When the cytosine bases are brought into coincidence, DMDC displays the exocyclic C(4′)-C(5′) bond located on the very close position to those of pyrimidine nucleosides with typical overall conformations. On the other hand, the hydroxyl O(3′)-H groups are separated by ca. 3 Å in the cases of DMDC and other pyrimidine nucleosides which have the C(2′)-endo sugar conformation. This result may be useful for the implication about the mechanism of the biological activity of DMDC.  相似文献   

3.

Background

Proline residues affect protein folding and stability via cis/trans isomerization of peptide bonds and by the Cγ-exo or -endo puckering of their pyrrolidine rings. Peptide bond conformation as well as puckering propensity can be manipulated by proper choice of ring substituents, e.g. Cγ-fluorination. Synthetic chemistry has routinely exploited ring-substituted proline analogs in order to change, modulate or control folding and stability of peptides.

Methodology/Principal Findings

In order to transmit this synthetic strategy to complex proteins, the ten proline residues of enhanced green fluorescent protein (EGFP) were globally replaced by (4R)- and (4S)-fluoroprolines (FPro). By this approach, we expected to affect the cis/trans peptidyl-proline bond isomerization and pyrrolidine ring puckering, which are responsible for the slow folding of this protein. Expression of both protein variants occurred at levels comparable to the parent protein, but the (4R)-FPro-EGFP resulted in irreversibly unfolded inclusion bodies, whereas the (4S)-FPro-EGFP led to a soluble fluorescent protein. Upon thermal denaturation, refolding of this variant occurs at significantly higher rates than the parent EGFP. Comparative inspection of the X-ray structures of EGFP and (4S)-FPro-EGFP allowed to correlate the significantly improved refolding with the Cγ-endo puckering of the pyrrolidine rings, which is favored by 4S-fluorination, and to lesser extents with the cis/trans isomerization of the prolines.

Conclusions/Significance

We discovered that the folding rates and stability of GFP are affected to a lesser extent by cis/trans isomerization of the proline bonds than by the puckering of pyrrolidine rings. In the Cγ-endo conformation the fluorine atoms are positioned in the structural context of the GFP such that a network of favorable local interactions is established. From these results the combined use of synthetic amino acids along with detailed structural knowledge and existing protein engineering methods can be envisioned as a promising strategy for the design of complex tailor-made proteins and even cellular structures of superior properties compared to the native forms.  相似文献   

4.
Abstract

Among the new generations of anthracycline drugs, morpholino-doxorubicin (MDox) and its derivative have unusually potent activity when compared with the parent doxorubicin. 3″- Cyano-morpholino-doxorubicin (CN-MDox) has been suggested to form a covalent crosslink to DNA, although the exact mode of interactions remains unclear. To establish the structural basis of this crosslink, we carried out X-ray diffraction analyses of the complexes between four different morpholino-doxorubicins (i.e., MDox, CN-MDox, (R)- and (S)-2″-methoxy- morpholino-Dox (MMDox)) and two DNA hexamers CGTACG and CGATCG. Their crystal data are similar to other Dau/Dox complexes with space group P41212,a=b ~28 Å, c~ 53 Å. The refined structures at ~1.8 Å resolution revealed that two drug molecules bind to the duplex with the aglycons intercalated between the CpG steps with their N3′ -morpholino- daunosamines in the minor groove. The morpholino moiety is flexible and may adopt different conformations dependent on the sequence context The O1 atoms of the two morpholino groups in the drug-DNA complexes are in van der Waals contact The structural results suggest possible crosslinking mechanism of CN-MDox. It is worth pointing out that by linking two piperazinyl- or piperidinyl-doxorubicins at the 1″ positions a new type of bis-doxorubicin derivatives may be synthesized which may bind to a hexanucleotide sequence with some specificity.  相似文献   

5.
Poly(β–l–aspartate)s are known to take up helical conformations reminiscent of the α-helix of polypeptides. The isobuttyl, n-butyl, and 2-methoxyethyl esters have been examined by polarized ir spectroscopy in order to discriminate between the left ( 1L ) and right ( 2R ) -handed conformations, which are known to be compatible with the 13/4-helix adopted by these polyamides when crystallized in the hexagonal form. Dichroic ratios obtained from samples stretched in poly(ethylene oxide) together with orientation measurements made by x-ray diffraction were used to estimate the transition moment directions of amide A, I, and II bands with respect to the fiber axis. These were compared to those calculated by modeling simulations to conclude that the right-handed conformation consisting of 14-membered hydrogen-bonded rings is the correct model for the 13/4-helix. These results give definite support to earlier molecular mechanics calculations, which had shown that the 2R model is energetically favored over the 1L by about 2. 5 kcal/(mol residue). © 1995 John Wiley & Sons, Inc.  相似文献   

6.
A Aubry  B Vitoux  M Marraud 《Biopolymers》1985,24(6):1089-1100
The crystal structures of ButCO-L -Pro-L -Pro-NHMe, H2O (1: monoclinic; P21; a = 6.662, b = 11.067, c = 12.205 Å; β = 96.28°) and ButCO-L -Pro-D -Pro-NHMe (2: monoclinic; P21; a = 10.770, b = 15.039, c = 11.325 Å; β = 110.00°) have been solved by x-ray diffraction. Structure 1 accommodates an open disposition with intermolecular interactions involving the water molecule, while 2 is βII-folded by an intramolecular i + 3 → i hydrogen bond. In both derivatives, small thermal parameters are indicative of fairly fixed conformations for the proline rings. Comparison between conformations of either isolated or adjacent L -Pro residues in the crystal structures of unstrained oligopeptides shows that the conformational properties of L -Pro-L -Pro sequences are probably a simple combination of those found for isolated L -Pro residues.  相似文献   

7.
Conformational analysis of triple helics of a type of collagen was performed with typical collagen tripeptide sequences based on Gly-Pro-Ala, Gly-Ala-Hyp, and Gly-Ala-Ala. During energy minimization, the possibility of continual deformation of the pyrrolidine cycle was taken into account in order to achieve better accuracy in the resulting structure. The (Gly-Pro-Ala)n structure is almost isomorphic to the (Gly-Pro-Hyp)n structure obtained in the previous work [Tumanyan, V. G. & Esipova, N.G. (1982) Biopolymers 21 , 475–497]. For a collagen-type structure, the optimal conformation of (Gly-Ala-Hyp)n tends to have a decreased unit twist (t = 15°), although the energy advantage with respect to the conformation with t = 45° is not so significant. A similar situation is observed for (Gly-Ala-Ala)n. In this case, the energy decrease during unwinding to t = 15° from t = 45° is quite small. The conformations of (Gly-Ala-Hyp)n and (Gly-Ala-Ala)n with t = 15° exhibit a similarity with a triple complex of polyproline II helices—a noncoiled coil such as (Gly-Pro-Hyp)n and (Gly-Pro-Ala)n. A similar structure may be postulated for subcomponent cq1 of the first component of a human complement containing substantial Gly-X-Pro and Gly-X-Y tripeptide derivatives in the primary structure (X, Y = any amino acid). The results suggest that the observed helical symmetry of collagen (t = 36°) is a consequence of superposition of diffraction patterns (for sufficiently long segments) from various helices (t varies from ~15° for Gly-X-Hyp and Gly-X-Y to ~56° for Gly-Pro-Ala). For short alternating segments, some unification of different helical structures is possible.  相似文献   

8.
The formation of (4R)-4-carbamoyl-4-[(4R)-3-O-benzyl-1,2-O-isopropylidene-β-l-threofuranos-4-C-yl]-oxazolidin-2-one instead of expected imidazolidin-2,4-dione (hydantoin) derivative from 5-amino-5-cyano-5-deoxy-3-O-benzyl-1,2-O-isopropylidene-α-d-glucofuranose or 3-O-benzyl-1,2-O-isopropylidene-α-d-xylo-hexofuranos-5-ulose under Bucherer-Bergs reaction conditions is reported. Single crystal X-ray diffraction data revealed that 3T4 is the prefered conformation for the furanose ring, while E2 and 2T1 conformations are adopted by the 1,3-dioxolane and 2-oxazolidinone five-membered rings, respectively.  相似文献   

9.
An algorithm has been developed that permits one to find all possible conformations of the sugar-phosphate backbone for any given disposition of DNA base pairs. For each of the conformations thus obtained, the energy of the helix was calculated by the method of atom-atom potentials. Several isolated regions in the space of the bases′ parameters (Arnott's parameters) have been found for energetically favorable helical structures. Two parameters, the distance of a base pair from the helix axis, D, and the windling angle, τ, allow one to subdivide possible conformations into the families of closely related forms. Two regions (ravines) on the (D, τ) map correspond to the know A and B families. In the B family a continuous transition has been obtained in which the double helix undergoes increasing winding, while the base pairs are moving toward the major (nonglycosidic) groove. Interrelationships between the variables, characterizing the spatial structure of the double helix, D, τ, TL and χ, when going along the bottom of the B ravine, were also obtained. Besides the Known A and B families, several new ones were found to be energetically possible. Among these the strongly underwound helices with the negative D values, as well as the forms with the C4-C5 angle in a trans position, should be mentioned. Biological roles of the different double-stranded conformations, in particular, in protein-nuclei acid interaction are discussed.  相似文献   

10.
Polarized Raman spectra have been obtained from single microcrystals of the duplex of the decamer d(A5T5)2 using a Raman microscope. This is the first report of Raman spectra from a crystal of a deoxyoligomer that contains only long, nonalternating sequences of adenine and thymine. Sequences containing d(A)n and d(T)n are of interest in view of recent suggestions that they induce bends in DNA and that they might exist in a nonstandard B-conformation. Polarized Raman spectra of a crystal of d(pTpT) have also been obtained. Both crystals display Raman bands whose intensities are very sensitive to the orientation of the crystal with respect to the direction of polarization of the incident laser beam. These spectra indicate that the helical axes of the oligonucleotides are parallel to the long axes of the crystals and that the d(A5T5)2 is not appreciably bent in the crystal. The Raman spectrum from the d(pTpT) crystal indicates that all of the furanose ring puckers are in a C2′-endo configuration since only the C2′-endo marker band at 835 ± 5 cm?1 is present. Crystals of d(A5T5)2 show measurable Raman intensities in both the 838- and 816-cm?1 bands. This indicates the presence of both the C2′-endo and C3′-endo, or possibly other non-C2′-endo, furanose conformations. The 816-cm?1 band is weak so that only a small fraction of the residues are estimated to be in the non-C2′-endo conformation. In both the d(pTpT) and d(A5T5)2 crystals the intensity of the bands due to vibrations of the backbone show only a small dependence on orientation of the crystals. This result is explained by the low symmetry of the puckered sugar rings. It is concluded that Raman spectra obtained from oligonucleotide crystals in which the orientation of the crystal axes to the laser polarization is not carefully controlled may contain intensity artifacts that are due to polarization effects.  相似文献   

11.
The conformations accessible to the internucleotide phosphodiester group in deoxydinucleoside monophosphates, deoxydinucleoside triphosphates, and deoxypolynucleotides have been explored in detail by potential energy calculations. The two most predominant conformations for the nucleotide moiety (3E and 2E) and their possible combinations (3E?3E, 3E?2E, 2E?2E, 2E?3E) have been employed, similar to our earlier studies on polyribonucleotides. The internucleotide P-O bond torsions are very sensitive to the sugar pucker (3E and 2E) and sugar type (ribose and 2′-deoxyribose) on the 3′-residue of dinucleoside phosphates. The preferred phosphodiester conformations found for the deoxydinucleoside monophosphates and triphosphates, in general, follow the same pattern as those obtained for ribose sugars when the sugar on the 3′-side of the molecule has the 3E sugar-ring conformation. The internucleotide P-O bonds show a greater degree of conformational freedom when the 3′-sugar has the 2E pucker. The double gauche g?g? conformation for the phosphodiester, which leads to the overlap of the adjacent bases, is shown to be one of the energetically most favored conformations for all the sequence of sugar puckers. It is found that the 2E?2E sequence of sugar puckers shows a greater energetic preference for the stacked helical conformation (g?g?) than the (3E?3E) and the mixed sugar-pucker combinations. This effect becomes more pronounced in going from a dinucleoside monophosphate to a dinucleoside triphosphate suggesting that the 2′-deoxy sugars favor the 2E sugar pucker in di-, oligo-, and polydeoxyribonucleotide structures. In addition to g?g?, the conformations g+g?, tg?, g?t, tg+, and g+t are also found to be possible for the phosphodiester in a polydeoxyribonucleotide and their populations depend to some extent on the sugar-pucker sequence. It is shown that the short-range intramolecular interactions involving the sugar and the phosphate groups dictate to a large extent the backbone conformations of nucleic acids and polynucleotides.  相似文献   

12.
The reversible acetylation of lysine to form N6‐acetyllysine in the regulation of protein function is a hallmark of epigenetics. Acetylation of the positively charged amino group of the lysine side chain generates a neutral N‐alkylacetamide moiety that serves as a molecular “switch” for the modulation of protein function and protein–protein interactions. We now report the analysis of 381 N6‐acetyllysine side chain amide conformations as found in 79 protein crystal structures and 11 protein NMR structures deposited in the Protein Data Bank (PDB) of the Research Collaboratory for Structural Bioinformatics. We find that only 74.3% of N6‐acetyllysine residues in protein crystal structures and 46.5% in protein NMR structures contain amide groups with energetically preferred trans or generously trans conformations. Surprisingly, 17.6% of N6‐acetyllysine residues in protein crystal structures and 5.3% in protein NMR structures contain amide groups with energetically unfavorable cis or generously cis conformations. Even more surprisingly, 8.1% of N6‐acetyllysine residues in protein crystal structures and 48.2% in NMR structures contain amide groups with energetically prohibitive twisted conformations that approach the transition state structure for cistrans isomerization. In contrast, 109 unique N‐alkylacetamide groups contained in 84 highly accurate small molecule crystal structures retrieved from the Cambridge Structural Database exclusively adopt energetically preferred trans conformations. Therefore, we conclude that cis and twisted N6‐acetyllysine amides in protein structures deposited in the PDB are erroneously modeled due to their energetically unfavorable or prohibitive conformations. Proteins 2013; © 2012 Wiley Periodicals, Inc.  相似文献   

13.
In the current study, the puckering states of the Proline ring occurring in diproline segments (LPro‐LPro) in proteins has been investigated with a segregation made on the basis of cis and trans states for the Pro‐Pro peptide bond and the conformational states for the diproline segment to investigate the effects of conformation of the diproline segment on the corresponding puckering state of the Proline ring in the segment if any. The value of the endocyclic ring torsional angles of the pyrrolidine ring has been used for calculating and visualizing various puckering states using a proposed new sign convention (+/?) nomenclature. The results have been compared to that obtained in a previous study on peptides from this group. In this study, quite interestingly, the Planar (G) conformation that was present in 14.3% of the cases in peptides, appears to be nearly a rare conformation in the case of proteins (1.9%). The present study indicates that the (Cγ‐exo/Cγ‐exo), (Cγ‐exo/Twisted Cγ‐exo‐Cβ‐endo) and (Twisted Cγ‐endo‐Cβ‐exo/Twisted Cγ‐endo‐Cβ‐exo) categories are the most preferred combinations. For Proline rings in proteins, the states Cγ‐exo, Twisted Cγ‐exo‐Cβ‐endo and Twisted Cγ‐endo‐Cβ‐exo are the most preferred states. Within diproline segments, the pyrrolidine ring conformations do not show a strong co‐relation to the backbone conformation in which they are observed. It is likely that five‐membered rings have a considerable plasticity of structure and are readily deformed to accommodate a variety of energetically preferred backbone conformations. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 605–610, 2013.  相似文献   

14.
The x-ray diffraction analyses of three N- and C-terminally blocked L , D dipeptides, namely t-Boc-D -Leu-L -Leu-OMe ( 1 ), t-Boc-L -Ile-D -alle-OMe ( 2 ), and t-Boc-D -aIle-L -Ile-OMe (3) containing enantiomeric or diastereomeric amino acid residues have been carried out. The structures were determined by direct methods and refined anisotropically to final R factors of 0.077. 0.058. and 0.072 for ( 1 ) ( 2 ) and ( 3 ), respectively. Peptides 1–3 all assume a similar U-shaped structure with ? and ψ torsion angles cosrresponding to one of the possible calculated minimum energy regions (regions E and G for L residues, and F*. D* and H* for D residues). The peptide backbones of 1-3 are almost super-imposable [provided that the appropriate inversion of the chiral centers of ( 2 ) is made]. Side-chain conformations of Leu residues in peptide ( 1 ) are g? (tg?) for the L -Leu residue and the mirrored g+ (tg+) for the D -Leu residue; however, in peptides ( 2 ) and ( 3 ) the conformations of the isoconfiguralional side chains of the Ile or allo-Ile residues are (g?t) t and (tg+) tfor the L -Ile and the D -allo-Ile moieties, respectively. In all cases, these conformations correspond to the more populated conformers of β-branched residues statistically found in crystal structures of small peptides. The results seem to indicate that, at least in short peptides with enantiomeric or diastereoisomeric residues, the change in chirality in the main-chain atoms perturbs the backbone conformation to a lesser extent and the side chain conformation to a greater extent. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
The conformations of the phytotoxic cyclic tetrapeptide tentoxin [cyclo-(L -MeAla1-L -Leu2-MePhe[(Z)Δ]3-Gly4 )] have been studied in aqueous solution by two-dimensional proton nmr at various temperatures. Contrary to what is observed in chloroform, tentoxin exhibits multiple exchanging conformations in water. Aggregation phenomena were also observed. Four conformations with different proportions (51, 37, 8, and 4%) were observed at ?5°C. Models were constructed from nmr parameters and restrained molecular dynamics simulations. All the models exhibit cis-trans-cis-trans conformation of the amide bond sequence. The conversion from one form to another is accomplished by a conformational peptide flip consisting of a 180° rotation of a nonmethylated peptide bond. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
A Monte Carlo method has been developed for generating the conformations of short single-stranded DNAs from arbitrary starting states. The chain conformers are constructed from energetically favorable arrangements of the constituent mononucleotides. Minimum energy states of individual dinucleotide monophosphate molecules are identified using a torsion angle minimizer. The glycosyl and acyclic backbone torsions of the dimers are allowed to vary, while the sugar rings are held fixed in one of the two preferred puckered forms. A total of 108 conformationally distinct states per dimer are considered in this first stage of minimization. The torsion angles within 5 kcal/mole of the global minimum in the resulting optimized states are then allowed to vary by ±10° in an effort to estimate the breadth of the different local minima. The energies of a total of 2187 (37) angle combinations are examined per local conformational minimum. Finally, the energies of all dinucleotide conformers are scaled so that the populations of differently puckered sugar rings in the theoretical sample match those found in nmr solution studies. This last step is necessitated by limitations in the theoretical methods to predict DNA sugar puckering accurately. The conformer populations of the individual acyclic torsion angles in the composite dimer ensembles are found to be in good agreement with the distributions of backbone conformations deduced from nmr coupling constants and the frequencies of glycosyl conformations in x-ray crystal structures, suggesting that the low energy states are reasonable. The low energy dimer forms (consisting of 150–325 conformational states per dimer step) are next used as variables in a Monte Carlo algorithm, which generates the conformations of single-stranded d(CXnG) chains, where X = A, T and n = 3, 4, 5. The oligonucleotides are built sequentially from the 5′ end of the chain using random numbers to select the conformations of overlapping dimer units. The simulations are very fast, involving a total of 106 conformations per chain sequence. The potential errors in the buildup procedure are minimized by taking advantage of known rotational interdependences in the sugar–phosphate backbone. The distributions of oligonucleotide conformations are examined in terms of the magnitudes, positions, and orientations of the end-to-end vectors of the chains. The differences in overall flexibility and extension of the oligomers are discussed in terms of the conformations of the constituent dinucleotide steps, while the general methodology is discussed and compared with other nucleic acid model building techniques. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
Molecular structures for parallel DNA and RNA double helices with Hoogsteen pairing are proposed for the first time. The DNA helices have sugars in the C2′-endo region and the phosphodiester conformations are (trans, gauche?), and the RNA helices have sugars in the C3′-endo region and the phosphodiester conformations are (gauche?, gauche?). A pseudorotational symmetry relates the two parallel strands of DNA helices and a screw symmetry relates the two strands of RNA helices, which have an associated tilt of the The conformational space of parallel helices with Hoogsteen base pairing, unlike the Watson-Crick duplex, is highly restricted due to the unique positioning of the symmetry axis in the former case. The features of the parallel double helix with Hoogsteen pairing are compared with the Watson-Crick duplex and the corresponding triple helix. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
The crystal and molecular structure of N-benzyloxycarbonyl-α-aminoisobutyryl-L -prolyl methylamide, the amino terminal dipeptide fragment of alamethicin, has been determined using direct methods. The compound crystallizes in the orthorhombic system with the space group P212121. Cell dimensions are a = 7.705 Å, b = 11.365 Å, and c = 21.904 Å. The structure has been refined using conventional procedures to a final R factor of 0.054. The molecular structure possesses a 4 → 1 intramolecular N-H—O hydrogen bond formed between the CO group of the urethane moiety and the NH group of the methylamide function. The peptide backbone adopts the type III β-turn conformation, with ?2 = ?51.0°, ψ2 = ?39.7°, ?3 = ?65.0°, ψ3 = ?25.4°. An unusual feature is the occurrence of the proline residue at position 3 of the β-turn. The observed structure supports the view that Aib residues initiate the formation of type III β-turn conformations. The pyrrolidine ring is puckered in Cγ-exo fashion.  相似文献   

19.
Condensation of 6-O-benzyl-7,8-dideoxy-1,2:3,4-di-O-isopropylidene-d-glycero-α-d-galacto-oct-7-ynopyranose with methyl 2,3,4-tri-O-benzyl-6-deoxy-β-d-galacto-heptodialdo-1,5-pyranoside afforded a 2:1 mixture of the 1S and 1R isomers (1a and 1b) of 3-[6(R)-O-benzyl-1,2:3,4-di-O-isopropylidene-α-d-galactopyranos-6-yl]-1-hydroxy-1-(methyl 2,3,4-tri-O-benzyl-6-deoxy-β-d-galactopyranosid-6-yl)propyne. A single crystal of the 1-O-acetyl derivative (1c) of 1a was investigated by X-ray diffraction methods in a four-circle diffractometer. Compound 1c crystallises in the monoclinic system, space group P21 (Z = 2) with cell dimensions a = 14.896(2), b = 8.295(1), c = 20.547(3) Å, and β = 102.66(1)°. The structure was solved by direct methods and refined by a full-matrix, least-squares procedure against 3839 unique reflections (F > 2σF), resulting in a final R = 0.045 (unit weights). The configuration at the new chiral center (C-1) was established as S(d). The galactopyranose rings have conformations 4C1 (tri-O-benzylated moiety) and °S5 + °T2 (di-O-isopropylidenated moiety). The 1,2- and 3,4-O-isopropylidene rings have 3T2 and 2E conformations, respectively.  相似文献   

20.
In this article we investigate all possible three-dimensional structures for sialyl Lewisa (SLea) in aqueous solution and we predict without a priori experimental information its conformation when bound to SelectinE by using a combination of long molecular dynamics (MD) simulations. Based on 10 ns MD studies, three structures differing in glycosidic conformations are proposed for SLea in aqueous solution. Based on a 4 ns MD study of the SLea-SelectinE complex with initial structures derived from our prediction tools, we find that, fucose and N-acetyl neuraminic acid are in close contact with SelectinE and therefore expect interactions of the protein with these two sugar rings to be significantly more important than in the case of galactose and N-acetyl glucosamine. Our predictions indicate that the N-acetyl glucosamine of SLea is positioned primarily in the aqueous phase. In order to be able to interact with SLea the side chains of amino acid residues Lys99 and Lys111 in SelectinE appear to undergo large conformational changes when contrasted with the positions of these residues in the X-ray crystal structure. Furthermore, amino acid residues Arg97, Glu98 and Lys99 are acting as a holding arm to position the NeuNAc of SLea in the binding pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号